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1. Introduction

The environment plays a key role in the determi-
nation of the properties and reactivity of substances
in condensed phases. The complexity of chemical
phenomena in solution has made it necessary to
develop a variety of models and computational tech-
niques to represent molecules in solution. These
techniques differ in the level of detail used to describe
the chemical system, the physical rules underlying
the process of interest, and the mathematical formu-
las used to describe these rules. The final goal of all
these models is the understanding of the behavior of
molecules in important environments.

Similar considerations apply to the more specific
context of biomolecules. Modern molecular biology
has revealed the intimate connection between life
processes and the structure and function of biomol-
ecules. Cells can survive owing to the maintenance
of well-organized supramolecular structures and very
complex macromolecular machinery that mediates
fundamental processes, like replication and transla-
tion of the genetic code, enzyme catalysis, or the
transfer of information through molecular messen-
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gers. The challenge for theoretical chemistry in this
field is to link the available 3-D information about
biomolecules with their function, which should be
explained in terms of the well-defined physics of
molecular interactions.

Our purpose is to present a comprehensive review
of the current theoretical methods available for the
description of molecules in biologically relevant en-
vironments, including not only pure solvents, but also
large macromolecular systems which have long been
recognized as a special type of highly anisotropic
solvent.1,2

A wide range of techniques has been developed to
model solvent effects in biomolecules, and one of the
goals here is to summarize the most important
features of these computational approaches, empha-
sizing the basic formalism and offering a critical
discussion of their strengths and weaknesses. We aim
to provide sufficient information to enable the reader

to choose the best method to be used for the study of
a particular solvated system.

Because of the rapid progress in computing tech-
nology, the number of computational approaches to
the description of solvent effects on chemical and
biochemical processes has grown considerably. There-
fore, we have been very selective in presenting the
computational methods, addressing the reader to key
references in each section for more comprehensive
reviews on the specific area. Thus, the review focuses
only on methods which are systematically applied to
the study of solvation in large biomolecular systems.
Accordingly, most quantum mechanics self-consistent
reaction field methods (QM-SCRF), which have been
extensively reviewed by other authors,3,4 are not
discussed in detail here. Finally, we should note that
the selection of literature to illustrate the potential
applications of theoretical methods is by no means
exhaustive and references have mainly been ex-
tracted from the articles published in the last two
years. Thus, we also address the reader to a limited
selection of recent reviews5-8 focused on methods
other than the QM-SCRF ones, which can be valuable
to complement the information presented here.

We have tried to cover all the main approaches for
the description of solvation in systems of biological
importance. After a general introduction on the
nature of the solvent effect (section 2), we present
discrete-classical (molecular dynamics and Monte
Carlo) methods (section 3), mixed QM-classical (QM/
MM) methods (section 4), empirical methods (section
5), classical-continuum approaches (section 6), and
other types of approaches to the description of sol-
vation (section 7).

2. The Solvent
A solvent has traditionally been defined as a

substance that is liquid under the conditions of
application, in which other substances can be dis-
solved and from which they can be recovered un-
changed on removal of the solvent.9 Many substances
can conform to this classical definition, and in fact,
the concept can be expanded to binary or multicom-
ponent liquid mixtures. The concept of a solvent can
be even more general in biological systems, where
large macromolecules can be considered as a special
type of solvent.1,2

Water, the most abundant component of living
organisms, is undoubtedly the most important sol-
vent in biological processes. Liquid water has a
complex structure due to the ability of the water
molecule to act as both a hydrogen-bond donor and
acceptor. The water-water hydrogen bond is very
strong, as demonstrated by its experimental gas-
phase dimerization enthalpy of -3.6 ( 0.5 kcal/mol.
10 The structure and properties of liquid water are
dominated by these hydrogen-bond interactions, which
are responsible for the formation of an extended,
dynamic hydrogen-bonded network.11 Biological pro-
cesses, nevertheless, encompass a wide array of
physical and chemical events, such as the transport
of substances through membranes, the binding of
ligands to receptors, and enzyme-catalyzed chemical
reactions.12-14 Clearly, the traditional concept of a
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solvent needs to be enlarged, since in addition to
aqueous solutions, biological processes also occur in
highly anisotropic environments such as the interior
of proteins or in relatively ordered supramolecular
structures such as biological membranes. In fact, the
control of metabolic processes depends on the ability
of the cell to modify the environment of the metabo-
lites, thus influencing their chemical reactivity.
Hence, detailed knowledge of the principles governing
biological systems cannot be achieved without con-
sidering the influence of the surrounding medium on
biochemical molecules.

2.1. The Nature of the Solvent Effect
Qualitative knowledge of the solvent effect can be

gained from empirical approaches based on specific
properties of the solute and solvents. There are
several sets of independent solvent characteristics,
which include properties such as the level of struc-
ture, polarity or softness, electron-pair and hydrogen-
bond donor/acceptor ability, polarizability, acidity/
basicity, and hydrophobicity/hydrophilicity.15-26 Stand-
ard comprehensive discussions of these properties
can be found in the reviews by Reichardt.27,28 All this
information has been exploited in the context of
empirical linear free-energy relationships to gain an
understanding of the influence of the solvent on
a variety of chemical phenomena, including solu-
bility, phase transfer, and chemical equilibria and
kinetics.29-35

From a microscopic point of view, solvation involves
the formation of a set of interactions between a solute
and a solvent as well as a change in the interactions
of the solvent molecules in the vicinity of the solute.
Thus, a key step in the understanding of solvation
is the determination of the structure adopted by
solvent molecules around the solute, since the nature
and strength of the associated interactions is inti-
mately connected to the macroscopic properties of the
solvated system. It is not surprising, then, that a
large body of work focuses directly on elucidating the
solvent shell structure around the solute.36-55 Par-
ticular attention has been paid to the structure of the
hydration shell around ions56-66 and to the solvation
of hydrophobic solutes.67-71

For quantitative treatments of solute-solvent in-
teractions, it is convenient to adopt Ben-Naim’s
definition of a solvation process.72-74 According to
Ben-Naim, the solvation of a solute can be defined
as the process in which a particle of the solute is
transferred from a fixed position in the gas phase into
a fixed position in solution at constant temperature,
pressure, and solvent composition. The free energy
of solvation (∆Gsol), the key parameter in describing
solvation,75-81 is then defined as the reversible work
spent in the transfer of the solute under those
conditions at equal numeral densities in the gas
phase and in solution. According to this definition,
∆Gsol incorporates both the free-energy contributions
related to direct solute-solvent interactions and
those arising from internal changes in the solute and
solvent upon solvation.

Conceptually, the free energy of solvation can be
determined through the addition of several contribu-

tions, as noted in the seminal works by Huron and
Claverie.82-84 Generally, the solvation process is
partitioned into three different steps: cavitation,
dispersion-repulsion, and electrostatics (see eq 2.1
and refs 3, 4, 85-87). The first step is the formation
of a cavity large enough to accommodate the solute
within the solvent. Since this is accomplished by
breaking down the cohesive forces between solvent
molecules, the free energy of cavitation (∆Gcav) is
unfavorable to solvation. In the second step, disper-
sion-repulsion (also denoted as van der Waals) forces
between the solute and solvent molecules are ‘switched
on’. These forces, which are universal and apply to
both solute and solvent molecules, contribute favor-
ably to solvation (∆Gvw), since the solute cavity is
created in regions where the dispersion forces are
stronger than the repulsive forces. These two terms,
cavitation and dispersion-repulsion, are often re-
ferred to as steric or nonelectrostatic contributions.
Finally, the third step considers the electrostatic
contribution (∆Gele). This later term measures the
work spent in building up the charge distribution of
the solute in solution. ∆Gele includes two compo-
nents: (i) the work necessary to create the solute’s
gas-phase charge distribution in solution and (ii) the
work required to polarize the solute charge distribu-
tion by the solvent. It is worth noting that the
electrostatic contribution includes not only the gain
of the electrostatic interaction energy between the
solute and solvent molecules, but also the work
needed to generate the solvent reaction field induced
by the solute charge distribution. Within the frame-
work of the linear free-energy response theory,88 the
electrostatic free-energy contribution to solvation is
one-half of the solute-solvent electrostatic interac-
tion energy.

The breakdown of the solvation process into steps
has facilitated the development of formalisms that
enable an accurate understanding of the solvation
features for different solutes and solvents.3,4,85-87

Thus, for polar solvents such as water, the dispersion
contribution is moderate and cannot fully counteract
the cavitation term, whereas for apolar solvents, the
cavitation work is smaller (in absolute terms) than
the dispersion-repulsion contribution due to the
weaker interactions between solvent molecules. For
apolar solutes, in apolar solvents the steric term can
be the main contribution to solvation, since solute-
solvent electrostatic interactions are weak, and the
dispersion term favoring solvation can compensate
for the cavitation work, which is not very large in
apolar solvents. On the contrary, for most solutes of
interest, in polar solvents such as water the electro-
static term makes the dominant contribution to the
free energy of solvation, due to the strength of
solute-solvent electrostatic interactions.

A direct application of the free energy of solvation
concept can be found in the determination of the
partition coefficient (P) of a given solute between two
immiscible solvents, typically water and an apolar
organic solvent. This parameter is related to the free
energy of transfer (∆∆Gtransfer) of the solute between

∆Gsol ) ∆Gele + ∆Gvw + ∆Gcav (2.1)
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the two solvents (eq 2.2). The partition coefficient is
very useful for understanding differential solvation
effects89-103 and has been used to explain biological
and pharmacological phenomena like adsorption and
transport of substances through cell membranes as
well as hydrophobic bonding ability.104-110

2.2. Solvent Effects on Electronic Properties
The solute-solvent interactions established upon

solvation affect the internal (nuclear and electronic)
degrees of freedom of the solute. For a given nuclear
configuration, the transfer of the solute from the gas
phase to a condensed phase changes the electron
distribution of the solute, thus altering its chemical
properties. This change is manifested in diverse
properties, such as the lengthening in the dipole
moment,111,112 the change in the molecular electro-
static potential,113-118 the variation in the molecular
volume,119 and even the spin density.4 The extent of
the electronic polarization effect is clearly reflected
in the enlargement of the dipole moment of water
upon condensation, which changes from 1.855 D for
an isolated water molecule120 to 2.4-2.6 D in the
condensed phase.121,122 In general, the enhancement
of the dipole moment upon solvation has been esti-
mated to be 20-30% of the gas-phase values for
neutral solutes in aqueous solution.111,112,123 Signifi-
cantly larger solvent-induced charge redistributions
have been reported for push-pull π-conjugated mol-
ecules.124 Even in less polar solvents such as chloro-
form, the solvent-induced polarization is not negli-
gible, as indicated by the dipole moment increases
of 8-10% which have been determined for neutral
molecules.125 As noted by Cramer and Truhlar,4 an
in-depth knowledge of these effects would be valuable
when examining the relationship between cavity
definition and electrostatics in QM continuum mod-
els. However, the experimental measurement of the
solute polarization in high dielectric media is prob-
lematic. In lieu of these data, comparing the QM
continuum model results with the results provided
by discrete theoretical methods can provide insight
into the effects of the solvent on the solute charge
distribution.123

2.3. Solvent Effects on Nuclear Distribution
The solvent also can change the nuclear configu-

ration of the solute as a result of the tendency of polar
solvents to stabilize structures with large charge
separations.87,126-129 The solvent-induced changes to
local geometrical parameters (i.e., the enlargement
of carbonyl bonds upon hydration) are moderate. Of
more importance are the changes that the solvent can
induce in the general molecular conformation of the
solute. Thus, the solvent can change the conforma-
tional population of the solute with respect to its gas-
phase state. There are numerous, recent examples
in the literature that show the relevance of the
solvent effect in modulating the conformational space
of different solutes, including among others130-132

small- and medium-size organic molecules,133-145

carbohydrates,146-149 and peptides.150-161

2.4. Solvent Effects on Spectroscopic Properties
The impact of a solvent on the spectroscopic

characteristics of a solute has been the subject of an
intense research effort, which is difficult to concisely
summarize here for space limitations. We address the
reader to specialized references27,28,162-201 for a more
detailed treatment of this important issue.

The effect of solvation on electronic transitions
in the ultraviolet or visible range can be explained
by considering the differential solvation of the ground
and excited states, which depends on the change
in the solute charge distribution in these two
states.27,28,162-164 Since electrons are expected to be
less tightly held in the excited state, the solute’s
charge separation should decrease upon its transition
from the ground to an excited state, and the solute-
solvent electrostatic interactions are thus generally
expected to cause a blue shift in the spectra. On the
other hand, dispersion effects tend to favor the
excited state, since it is usually more polarizable than
the ground state, and this tends to produce red shifts
upon solvation. According to the Franck-Condon
principle, vertical transitions will alter the solute’s
electron charge distribution but not its internal
geometry, so the cavitation component is expected to
have little effect on the spectra. Overall, the direction
of a solute’s spectral shift upon solvation depends on
the relative polarity of the solute in both its ground
and excited states as well as on the solvent’s polarity
and polarizability.

The extreme velocity of photoexcitation precludes
any large-scale solvent reorganization during this
process. Therefore, for an absorption process, the
excited state of the solute “fits” into the cage struc-
ture which the solvent molecules adopted to accom-
modate the ground-state charge distribution of the
solute. Accordingly, this process corresponds to a
nonequilibrium solvation phenomena,165-172 since
only electronic (noninertial) relaxation of the solvent
molecules occurs. Similar considerations apply to
downward vertical transitions, i.e., fluorescence.
Much recent literature is focused on the theoretical
description of these processes,173-186 especially excited-
state proton transfers.187-191

There are also notable solvent effects on vibrational
spectra192-196 which depend on the magnitude of both
nonspecific and specific, i.e., hydrogen bond, solute-
solvent interactions. Theoretical representation of
these effects is especially difficult, since it is neces-
sary to separate the inertial and noninertial portions
of the solvent response,3 and this requires a careful
evaluation of both the nature of the solute vibrations
and the properties of the surrounding medium.197-199

We address the reader to specialized references197-201

for a more complete explanation on this issue.

2.5. Solvent Effects on Tautomerism and
Acidity/Basicity

Tautomerism is another extremely solvent-depend-
ent chemical process that affects the activity of

log P ) -
∆∆Gtransfer

2.303RT
) -

∆Gsol,org - ∆Gsol,wat

2.303RT
(2.2)
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biomolecules. Two classic examples are the keto/enol
equilibrium of (i) â-diketones, in which the enol form
is the most populated species in apolar solvents
whereas the keto species is the most stable tautomer
in aqueous solution,28 and (ii) 4-pyridone, in which
the population ratio between the keto and enol
tautomers changes by a factor of 104 upon its transfer
from the gas phase to an aqueous solution.202 Several
recent studies have focused on the tautomeric equi-
libria of small organic compounds,203-208 of hetero-
cycles,128,209-212 and especially of nucleic acid bases
and compounds structurally related to them.45,46,213-220

Theoretical and experimental data show that polar
solvents generally displace the tautomeric equilibri-
um so as to increase the population of the most polar
tautomer, and this effect can be large enough to
change the intrinsic tautomeric preference.

Acid/base equilibria also play a key role in most
chemical and biological processes. The acid/base
properties of a solute in solution depend on a subtle
balance between (i) the intrinsic acidity/basicity of
the solute in the gas phase and (ii) the ability of the
solvent to stabilize neutral and ionized species.
Clearly, the former is expected to be predominant in
very apolar solvents and the latter in polar solvents.
This balance is illustrated by the ionizable side
chains of amino acids, whose acidity/basicity is
strongly dependent on their exposure to solvent.
Thus, a single ionizable residue tends to be in its
neutral form when buried in the very apolar environ-
ment in the interior of the protein, while its ionized
form is expected to predominate when the side chain
is exposed to solvent.221 The importance of ionization
in chemical and biochemical processes along with the
difficulty of experimentally analyzing it have stimu-
lated the use of theoretical methods to predict solvent
effects on the intrinsic acid/base properties of mol-
ecules. The prediction of absolute pKa values is
extremely difficult, since the gas-phase proton affin-
ity and the free energies of solvation of neutral and
ionic species are difficult to accurately determine.222-225

The theoretical determination of relative pKa values
for related compounds is more feasible.97,226-233

2.6. Solvent Effects on Reactive Processes
A solvent influences chemical reactivity by (i)

modulating the intrinsic characteristics of the reac-
tants, (ii) introducing friction, and (iii) differentially
stabilizing reactants, products, and transition states.
As already noted, changes in the intrinsic reactive
properties of a solute are mainly related to polariza-
tion of its charge distribution and will not be further
examined here.

Friction, including both mechanical and dielectric
effects, greatly influences the dynamics of molecular
systems.3 At 300 K, a typical hydrogen bond between
a pair of water molecules will separate and form new
contacts with other neighbors within a few picosec-
onds. Introducing solute molecules influences the
motion of water in several different ways. A highly
charged ion will orient first hydration shell water
molecules about itself, and these will have large
residence times compared to bulk water. The mobility
of the solutes is, in turn, limited by their interactions

with water molecules. Thus, over very short periods
of time, small solutes will exhibit small-amplitude
motions within their solvation cages, whereas at
longer times, rearrangement of the hydrogen-bond
network permits greater solute displacements. Col-
lisions of the solute with solvent molecules interrupt
these displacements, giving rise to frictional effects,
which modulate solute diffusion and effective barriers
to internal motion in flexible molecules.234,235 Like-
wise, solvent friction that occurs when the energy
barrier is crossed in a reactive process has a re-
markable influence on the rate constant for the
reaction.236-240

The interaction of solvent molecules with reactants,
products, and transition states can affect a chemical
reaction, especially if the reaction occurs in a polar
solvent that interacts strongly with the reactive
species. This can be especially important when there
are large differences in the polarities of the reactants,
transition state, or products. A classic example that
illustrates this solvent effect is the SN2 reaction, in
which water molecules induce large changes in the
kinetic and thermodynamic characteristics of the
reaction. Another example is provided by the nucleo-
philic attack of an R-O- group on a carbonyl center,
which is very exothermic and occurs without an
activation barrier in the gas phase but is clearly
endothermic with a notable activation barrier in
aqueous solution.241-244

A survey of the recent literature provides numer-
ous examples of the influence of the solvent on the
thermodynamics and kinetics of chemical reactions.
In particular, attention has been paid to proton-
transfer reactions’245-249 hydrolysis,250-256 Diels-
Alder and cyclization reactions,257-261 ring opening,262

decarboxylation,263-265 and other reactions.266-279

2.7. Solvent Effects on Molecular Association
Whether or not molecular association occurs be-

tween solute molecules is largely dependent on the
solvent. Thus, in polar solvents such as water, polar
structures will be well solvated due to nonspecific
(dipole-dipole and dipole-induced dipole contacts)
and specific (hydrogen-bonding) interactions with the
solvent. Under these conditions, the association of
two solute molecules will disrupt many favorable
solute-solvent electrostatic interactions and thus
will make an unfavorable (electrostatic) contribution
to the complex formation. On the other hand, since
the association reduces the size of the solute cavity,
the unfavorable steric contribution will decrease due
to the reduction of the cavitation term. Bimolecular
association also leads to the loss of translational and
rotational freedom and even to the freezing of inter-
nal rotations, thus giving rise to an unfavorable
entropic contribution, which must be overcome by
stabilizing noncovalent interactions. The interactions
of the solute with the solvent may affect the entropy
of dimerization.3,280-283 Thus, solute rotation dynam-
ics can be modulated by the disruption of specific
interactions of the solute with the solvent mol-
ecules.284 The couplings between large-amplitude
motions of the solute can also be altered upon
solvation. Overall, while the association of polar
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solutes can occur in apolar solvents, many polar
solute associations will be disfavored in high-dielec-
tric media.

An even more dramatic effect of solvation on
molecular association is the solvent-induced change
in the configurational space of noncovalent com-
plexes. Thus, the relative arrangement of interacting
molecules depends on the properties of the solvent.
This is illustrated, for instance, in the subtle balance
between hydrogen-bonded and stacking-type interac-
tions which occur in the association of nucleic acid
bases in aqueous solution versus those which occur
in the gas phase.220,285-293 This balance currently
constitutes a challenge for theoretical methods. An-
other example of a solvent effect on molecular as-
sociation is the stability of salt bridges in peptides
and proteins, which depends on the degree of
their exposure to solvent but also depends on the
microscopic local environment when they are buried
in the interior of proteins.294-298 There are also
several recent examples of the impact of the solvent
on the dimerization of a variety of neutral polar
molecules.299-303

2.8. Solvation and Biomacromolecules
Biomacromolecules can be considered to behave as

if they were a special anisotropic solvent surrounding
a small solute (the ligand). Alternatively, they can
be considered in their entirety as a solute immersed
in an aqueous solvent or biological membrane. Sol-
vent effects are thus expected to be crucial in
determining both the structure and reactivity of
biomacromolecules.

Nucleic acids illustrate the impact of the environ-
ment on the structure of biomacromolecules. DNA is
surrounded by a dense cationic atmosphere,304-308

which influences its helical conformation309-311 and
the stability of unusual DNA forms.312-314 Hydration
of the DNA is also very specific, as evidenced by the
existence of the “spine of hydration” located in the
minor groove of the physiological B-DNA.315,316 Hy-
dration is vital to maintaining the active conforma-
tion of DNA, as shown by the change from active (B-)
to inactive (A-) conformations induced by partial
dehydration317-320 as well as by the role of hydra-
tion in modulating cation binding to bases.321 The
solvent also affects the structure and functions of
proteins,12-14,235 as recognized in the exploitation of
nonaqueous enzymology in biotechnology research
and development.322-325

Biomacromolecules are dynamic structures, and
the structural fluctuations occurring in these mol-
ecules affect their biological activity.235 Because
proteins and nucleic acids are structurally complex,
they undergo a very wide range of internal motions,
from fast, localized processes to large-scale collective
motions such as protein folding. One example is the
involvement of “breathing” events in the approach
of substrates to, and the release of products from, the
active site of enzymes.326-328

The effect of water molecules on the structure of
macromolecules is essential to their functioning. In
fact, liquid water has been referred to “as the
lubricant of life”,329 since water molecules “catalyze”

rapid conformational fluctuations by a repertoire of
transient hydrated conformations, which in turn
provide a low-energy pathway between the confor-
mational states of biomacromolecules.330-332 Informa-
tion on the role of the solvent in this process can be
gained from theoretical simulations of the flexibility
of peptides in solution, which in turn can help us
understand the nucleation of secondary structural
elements in proteins.333-339 The effect of the solvent
on the configurational space sampling of biomolecules
is particularly important in protein folding.340-351

Many biological processes are mediated by ligand
binding. The binding free energy is determined by a
balance between two contributions: (i) the hydration
of the ligand-receptor complex relative to the hydra-
tion of the separated ligand and receptor and (ii) the
change in the free energy related to the interaction
between receptor and ligand. Binding can be inter-
preted as a change in the surrounding environment
(water T receptor for the ligand and water T ligand
for the receptor), which emphasizes the importance
of solvation effects on ligand-receptor binding. In
fact, biological receptors can be thought of as highly
inhomogeneous, anisotropic “solvents”.1,2,352-358

3. Classical Discrete Models: Monte Carlo and
Molecular Dynamics

The most obvious way to reproduce the solvent
effect is to surround the solute with a large number
of solvent molecules, which are represented at the
same level of atomic detail as the solute. The dynamic
nature of the solvated system is then represented by
means of Monte Carlo (MC) or molecular dynamics
(MD) algorithms.

3.1. Basic Theory
The molecular interactions of solvated systems can

be represented at three different levels: (i) pure
quantum mechanical (QM), (ii) pure classical (MM),
and (iii) mixed (QM/MM) levels. The pure QM treat-
ment is the most rigorous approach a priori, but in
practice, it is not useful for systems of biochemical
interest because of the tremendous cost of QM
simulations for very large systems, even when low
levels of QM theory are used. The QM/MM approach
defines the solute or a small part of a large solute
(i.e., the active site of an enzyme) at the QM level,
while the rest of the system (including the solvent)
is represented at the classical level. QM/MM methods
can be used to study reactivity in macromolecules or
to analyze fine details of the solvation of small solutes
(see below). However, for most applications in bio-
chemistry the pure classical methods are still the
obvious choice.

Classical MC and MD methods rely on force fields,
which are parametrized to describe molecular inter-
actions. For biochemical studies, the force fields used
are similar to those shown in eqs 3.1-3.7, where the
total energy is the sum of “bonded” (eqs 3.1-3.5) and
“nonbonded” (eqs 3.6 and 3.7) terms. The bonded
terms account for changes in the potential energy
resulting from the modification of bond lengths
(stretching), angles (bending), and dihedrals (proper
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and improper torsions). The nonbonded terms ac-
count for electrostatic and van der Waals interactions
between atoms which are at least three bonds apart.

In eqs 3.1-3.5, Kl and Kb are stretching and
bending force constants, L0 and Θ0 are equilibrium
lengths and angles, Φ stands for dihedral (proper or
improper) angles, R is the phase angle, n is the
periodicity of the Fourier term, Vn is the proper
torsional barrier for the nth Fourier term, and Vitor
is the improper torsional barrier. In eqs 3.6 and 3.7,
A and B represent van der Waals parameters, Q are
charges, rij are interatomic distances, and ú is the
1-4 scaling factor.

Once the potential energy is computed using eqs
3.1-3.7, Boltzmann samplings are obtained using
Metropolis-Monte Carlo78,81,359-368 or Newtonian mo-
lecular dynamics.80,369-371 The configurational space
of the solvated system is typically defined using
internal coordinates in MC simulations, while Car-
tesian coordinates are used in most MD simulations.
Owing to their use of internal coordinates, MC
techniques allow fine control of the configurational
space, which is ideal for the study of small molecules
in solution. Although several authors have reported
the use of MC simulations in macromolecular sys-
tems represented at the atomic level,372-375 most
studies of macromolecules use MD.

Many force fields have been developed for the
study of macromolecules in solution.376-390 Despite
the simplicity of their formalism, the latest force
fields384-390 provide reliable descriptions of biomo-
lecular systems, partly due to the higher accuracy of
the reference data used in the force-field parametri-
zation. Force-field parameters for solvents, which are
typically obtained by fitting simulation results to the
experimental data of pure liquids, provide quite
consistent descriptions of most static properties of
solvents. However, they do not give reliable repre-
sentations of some key properties such as the dielec-
tric constant of the pure liquid.391-395 The models of
solvents which are currently used were mostly de-

veloped in the 1970s and 1980s,396-402 and there is a
general consensus that not much improvement to
them is possible unless the formalism of the force
field is modified (see below).

3.2. Information Gained from MD(MC) Simulations
MD (or MC) simulations provide very valuable

information about the structural and dynamic be-
havior of biomolecules. In the following discussion we
note some information that can be gained from MD
simulations, which is often difficult to obtain using
other simulation techniques, and point out areas
where future advances are needed.

3.2.a. Average Structural Information

The analysis of trajectories provides the time-
averaged configuration of the solute. For nonequi-
librium processes such as protein folding and unfold-
ing, the analysis of the structures sampled during
the trajectory allows us to examine the time evolution
of the molecular system.79,403-410

3.2.b. Solute Conformational Flexibility

Large solutes such as proteins or nucleic acids are
flexible in solution, and their functional role is often
dependent on these structural fluctuations. MD
trajectories can be used to examine the dynamics of
biomolecules. Principal component analysis (PCA) is
applied to the MD trajectories to identify the most
important movements in the macromolecules.327,411

It is also possible to compute the entropy difference
between two stable states of a macromolecule using
techniques such as the covariance matrix.412,413 Under
some assumptions, this can be used to gain insight
into concepts such as “preorganization”, “rigidity”,
and “entropy trapping”, whose importance has been
described in several works.414-416

3.2.c. Solvent Structure

MD (or MC) provides an acceptable picture of the
solvent structure around a solute. For small spherical
solutes, the solvent structure can be represented by
radial distribution functions (eq 3.8). For macromol-
ecules, 3-D distribution functions (df) also can be
defined as shown in eqs 3.8 and 3.9,417-423 where the
3-D space around the macromolecule has been di-
vided into small volume elements (i,j,k). In eqs 3.8
and 3.9, Ny stands for the number of solvent mol-
ecules found when sampling in the spherical layer
located between the distances r and r + dr from the
solute, Fy is the density of the pure solvent (y), and
i,j,k represent a grid element of dimensions li, lj, and
lk.

Distribution functions can be used either to obtain
structural details of the solvent around the solute or

g(r) )
〈Ny(r, r + dr)〉

4πFyr
2 dr

(3.8)

df(i,j,k) )
〈Ny(i,j,k)〉

liljlkFy
(3.9)

Epot ) Estr + Ebend + Etor + Eitor + Evw + Eele (3.1)

Estr ) ∑
str

K1(L - L0)
2 (3.2)

Ebend ) ∑
bend

Kb(Θ - Θ0)
2 (3.3)

Etor ) ∑
tor

∑
n

Vn

2
[1 + cos(nΦ - R)] (3.4)

Eitor ) ∑
tor

Vitor

2
[1 - cos(2Φ)] (3.5)

Evw ) úvw∑
k,l [( Akl

rkl
12) - (Bkl

rkl
6)] + ∑

i,j [( Aij

rij
12) - (Bij

rij
6)]
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Eele ) úele∑
k,l

QkQl

rkl

+ ∑
i,j

QiQj

rij

(3.7)
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to estimate solvation free energies. 3-D distribution
functions, which are computed on a grid defined by
the MD-averaged structure of a macromolecule,
can be integrated to determine the preferential
solvation free energy of a particular site on the
macromolecule, as shown in eq 3.10, where the sum
includes all the grid elements that define the state
of interest.

In our experience eq 3.10 provides suitable esti-
mates of the preferential solvation free energies when
(i) the state of interest can be defined in terms of the
grid elements and (ii) no dramatic conformational
change in the macromolecule takes place during the
trajectory. Other cases contain too much noise to
ensure an acceptable estimate of the free energy.

3.2.d. Energy Analysis
The total energy of a solvated system varies mark-

edly during the trajectory, which limits its quantita-
tive use. However, most of the statistical noise stems
from solvent-solvent interactions, and MD-averaged
values for solute-solute and solute-solvent interac-
tions often can be determined with only moderate
noise by performing long MD simulations. It is then
possible to define a “pseudo-energy” function by
postprocessing and averaging the MD trajectories, as
noted in eq 3.11, where the free energy of solvation
(∆Gsol) is computed for the entire trajectory using
continuum models (see below). Recent studies have
exploited this approach to rationalize the differences
in the stabilities of different conformations of a given
macromolecule.424-427 The most serious shortcomings
of this method are (i) the nonnegligible noise in the
averages and (ii) the difficulty in coupling discrete
solute-solute interactions with continuum solvation
calculations.

The potential energies collected from MD trajec-
tories also can be examined using methods based on
extended linear response theory.88,369,428-432 The steric
components of solvation (see eq 3.12) can then be
determined empirically from the solvent-accessible
surface (cavitation) and from the solute-solvent van
der Waals (dispersion-repulsion) interaction energy.
In eq 3.12, s stands for the solute and x for the
solvent, R and â are empirical factors, and SAS is
the solvent-accessible surface of the solute.

Although linear response theory accurately repre-
sents the free-energy change associated with the
generation of a charge in an homogeneous solvent,
it might not be suitable for the representation of
“solvation” in a macromolecule. Accordingly, the term
1/2 in eq 3.12 should be replaced by another empirical

parameter, γ in eq 3.13, which must be optimized in
conjunction with R and â.428,433

Extended linear free-energy response methods
have been combined with standard thermodynamic
cycles (see Figure 1) to determine the differences

between the binding free energies of related com-
pounds (eq 3.14).428-433,434,435 Initial studies in this
area were performed by Lee et al.436 However, the
use of the technique is limited since (i) the statistical
noise in the averages of the solute-solvent interac-
tion energies is nonnegligible, (ii) intrasolute con-
tributions to binding are not included, and (iii) R, â,
and γ have to be parametrized for each protein of
interest.

3.3. Free-Energy Perturbation and
Thermodynamic Integration

The combination of statistical mechanics and MD
or MC samplings allows the computation of free-
energy differences between two related states by
using several algorithms. The most popular methods
used in solvation studies are free-energy perturbation
(FEP) and thermodynamic integration (TI), which
will be very briefly introduced here. However, other
related algorithms such as potential of mean force,
umbrella sampling, slow growth, weighted histo-
grams, or multiconfigurational thermodynamic inte-
gration have also been used to compute free-energy
differences in solution.78,80,368,437-443

According to FEP, the free-energy difference when
a system changes from state P to state Q can be
computed using eq 3.15, while TI determines this
difference using eq 3.16. In both cases, λ is a coupling
parameter which controls a smooth change from state
P to state Q (see eq 3.17, where H stands for the
Hamiltonian that defines states P or Q). The change
from P to Q takes place through an artificial route
taking advantage of the state function nature of the
free energy. Note that eqs 3.15-3.17 provide the
difference in Gibbs free energy under the assumption
that the change in the PV term is zero.

∆Gsol ) -RT ln( ∑
i,j,k

state

df(i,j,k)) (3.10)

E ) 〈Esolute-solute
force-field 〉 + 〈∆Gsol〉 (3.11)

∆Gsol ) 1
2

〈Eele
sx 〉 + RSASs + â〈Evw

sx 〉 (3.12)

∆Gsol ) γ〈Eele
sx 〉 + RSASs + â〈Evw

sx 〉 (3.13)

Figure 1. Thermodynamic cycle used to determine the
difference in binding free energy.

∆∆Gbinding
A-B ) ∆∆Gsol

A-B(protein) - ∆∆Gsol
A-B(water)

(3.14)
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FEP and TI can be used to estimate the solvation
free energy,444-447 which is defined as the difference
between the free energies associated with the an-
nihilation of a molecule in the gas phase and in
solution (see eq 3.18 and Figure 2). Likewise FEP and

TI, together with eq 3.14, can be used to determine
the difference between the binding free energies of
two molecules.78,81,366-368,448

FEP and TI are rigorous techniques and do not
require additional empirical parameters other than
those implicit in the force field. These methods can
reproduce the free energies of hydration for small
neutral solutes with average errors of around 1 kcal/
mol.444,447 These errors are only slightly higher than
those found using the most refined versions of self-
consistent reaction field methods3,4,449,450 or extended
linear response theory,428-433 both of which require
much more accurate calibration. The range of ap-
plication of FEP and TI is limited, however, since
states P and Q in eqs 3.15-3.17 have to be similar
to reduce the statistical noise in the free-energy
estimates. Thus, they are widely used to determine
binding free-energy differences for similar molecules
but are not used when the two molecules are very
different.

3.4. Recent Improvements in MD and MC
Simulation

MD and MC simulations are very powerful for
representing biomolecular systems, but they have
several technical and formal problems. Current re-
search in the field aims to overcome these limitations.

3.4.a. Accuracy of the Force Fields
Force fields are parametrized using a mixture of

experimental and theoretical data.376-390 Owing to

obvious computational limitations, the early genera-
tions of force fields were parametrized using low-level
QM calculations, which sharply limited their ac-
curacy. Several groups384-390 recently addressed the
force-field reparametrization using higher level QM
calculations, which has improved the results obtained
from the calculations. However, most of the current
force fields are limited by (i) the use of a reduced set
of charges to represent Coulombic interactions and
(ii) the neglect of polarization effects.

Potentials derived from atom-centered point charges
are too isotropic and limit the accuracy of the force
field by preventing us from detecting all the details
of the real molecular charge distribution.451-454 The
introduction of atomic dipoles may improve the
charge representation,452,453 but the force-field cal-
culation is much slower. An alternative is to use
multicentric charges,451,454 which are located not only
at the nuclei, but also along chemical bonds or lone
pair axes. The use of multicentric charges notably
reduces the errors in the electrostatic potential, with
only a moderate loss of computational efficiency.454

However, the use of multicentric charges in force-
field calculations is limited by their conformational
dependence and by the need to reparametrize the van
der Waals parameters when the charges are located
outside of nuclei.

The introduction of polarization is one of the major
challenges affecting the development of new force
fields. Force fields typically use effective pair poten-
tials, which are assumed to account for the effect of
the average solvent polarization on the solute charge
distribution. However, these potentials are not suit-
able for representing atoms in different environments
or the external and internal parts of proteins.455 The
strategy most widely used to introduce polarization
effects is to use the induced dipole theory. According
to this approach, the total electrostatic energy of a
system is equal to the standard Coulombic potential
generated by fixed charges plus a polarization term
(Eind) that results from the interaction between the
induced dipoles and the permanent field (see eqs 3.19
and 3.20). In eqs 3.19 and 3.20 the index 0 refers to
the static charge distribution, Ei

0 is the unpolarized
field, and ∆µi is the induced dipole generated on atom
i.

The induced dipole ∆µ is computed using eq 3.21,
where the total field E is obtained by adding the
permanent field and the polarization contribution
determined from the induced dipoles (eq 3.22). In eqs
3.21 and 3.22, R stands for the atomic polarizability
and T is the dipole tensor.

∆GPfQ ) - ∑
λ)0

1-∆λ

RT ln 〈exp - (Eλ+∆λ - Eλ)/RT〉λ

(3.15)

∆GPfQ ) ∑
λ)0

1-∆λ

[∫λ

λ+∆λ〈∂Eλ′/∂λ′〉λ′ dλ] (3.16)

Hλ ) (1 - λ)HP + λHQ (3.17)

Figure 2. Thermydynamic cycle used to compute the free
energy of solvation.
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The use of the induced dipole theory in the study
of macromolecules is hindered by its computational
cost, which results from both the extra computational
effort needed to compute dipole interactions and the
interdependence of the induced dipole and the total
electric field (see eq 3.19-3.22). Furthermore, the
accuracy of the estimated polarization energy which
is obtained is limited by several technical problems
arising from (i) the use of isotropic polarizabilities,
(ii) the transfer of atomic polarizabilities to different
molecular environments, (iii) the short-range cou-
pling between induced dipoles, and (iv) the neglect
of hyperpolarizability effects. Strategies to solve these
problems and increase the efficiency and accuracy of
the calculation are explained elsewhere.402,456-463

One of the finest alternative approaches for intro-
ducing polarization into classical calculations is the
fluctuating charge model.463-466 This approach relies
on the principle of electronegativity equalization,
which considers that charges are not fixed but
instead can flow along the atoms. The optimum set
of charges to use is the one that minimizes the total
energy functional (ET) shown in eq 3.23, subject to a
charge neutrality constraint. Note that this con-
straint can be imposed at the level of a fragment, a
molecule, or a system, which allows for the charge
migration between fragments or molecules.463

In eq 3.23, i and j stand for molecules, R and â
represent atoms, ø0 is the Mulliken electronegativity,
ER is the ground-state energy of atom R, JRR

0 is twice
the hardness of the electronegativity of atom R, and
JRâ is the Coulomb interaction between atoms R and
â. JRâ is calculated as a simple 1/r function for
intermolecular interactions (i * j) and as a Slater-
based overlap matrix for intramolecular interactions
(i ) j).

For fluctuating charge calculations, the charge
elements are treated as “particles” that move from
one atom to the other, mimicking the Carr-Par-
rinello QM molecular dynamics treatment,467,468 in
accordance with Newton’s laws, the electroneutrality
principle, and the energy functional in eq 3.23.
Versions of the method have been adapted to the MC
framework464 and modified to include polarizable
dipoles.469

The fluctuating charge model has been successfully
applied to the study of small solvents. Water models
fail in the description of out-of-plane polarization,
however, which represents a major limitation of the
method.470 Furthermore, this model has not yet been
systematically used for macromolecular systems.
This is likely due to (i) the difficulty in parametrizing
all the terms in eq 3.23 for large molecules and (ii)
the increased computational effort required when a
large number of intramolecular Coulombic interac-
tions have to be computed.

3.4.b. Long-Range Effects

Electrostatic interaction decays very slowly with
distance. Thus, the use of spherical cutoffs could lead
to important errors in MD or MC simulations due to
(i) the sharp transition at the cutoff distance and (ii)
the neglect of electrostatic interactions beyond the
cutoff. Several strategies based on the use of switch-
ing and shifting functions383,471,472 have been devel-
oped to smooth the electrostatic function at the cutoff
boundary. Other strategies which have been used to
capture long-range electrostatic interactions rely on
the use of473-482 (i) continuum models to represent
the solvent effect473-478 and (ii) Ewald strategies.479-482

Both continuum and Ewald methods include long-
range effects quite accurately with only a moderate
increase in computational effort. Nevertheless, they
are not always useful for treating these effects in FEP
and TI calculations. For instance, net charge genera-
tion or annihilation (i.e., solvation of ions) cannot be
properly computed by this method because of the
complexity involved in considering the contribution
to the free-energy change due to the solvent mol-
ecules beyond the cutoff.

3.4.c. Time Scale

Some biomolecular processes occur on a time scale
of seconds, which is far longer than the time scale
that can currently be addressed using MD simula-
tions. Recent advances in computer science, along
with the advent of more efficient parallel codes, have
enabled us to perform MD simulations for proteins
on a microsecond time scale,348 i.e., 105-106 times
longer than what was considered to be “state of the
art” just a few years ago.404,405 However, another
increase of 105-106 is still needed to reach the time
scale of biologically relevant phenomena. Current
approaches483-486 to increasing the computational
efficiency in MD and MC simulations rely on algo-
rithms designed for massive parallel computers, the
use of dual time step integration methods, reducing
the complexity of the potential functional, and ap-
plying continuum treatments to the solvent (see
below).

4. Quantum Mechanics/Molecular Mechanics
Methods

4.1. General Principles
Quantum mechanics/molecular mechanics (QM/

MM) methods combine quantum mechanical and
molecular mechanical approaches to study systems
that (i) are too large for full QM treatments and (ii)
cannot be properly described by strictly classical
methods because they involve large electron density
redistributions or the breaking or formation of chemi-
cal bonds.7,8,487-497 To simulate these systems, QM/
MM methods treat all the atoms that are directly
involved in the chemical process at the QM level
while the rest of the system is described using MM
force fields. Before discussing their general prin-
ciples, let us distinguish between combined QM/MM
and hybrid QM/MM methods.498 The former name is
generally used to denote those QM/MM methods

ET ) ∑
i
∑
R

[ER(0) + ø̃R
0 QiR +

1

2
JRR

0 QiR
2] +

∑
iR<jâ

JRâ(riRjâ)QiRQjâ + Evw (3.23)
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where the solute is treated at the QM level and the
MM part includes the surrounding solvent molecules.
Conversely, the hybrid designation is usually used
for those QM/MM methods which partition a single,
large molecule into an active part that is treated at
the QM level and an assisting MM portion, which
implies the “cutting” of one or more covalent bonds.
This cutting feature makes it necessary to resort to
more complex treatments in hybrid methods than in
combined methods (see below).

The Hamiltonian of the whole system can be
defined as the sum of three terms (eq 4.1) corre-
sponding to the QM subsystem, the MM subsystem,
and the coupling between the QM and MM regions.

The coupling term in eq 4.1, HQM/MM, includes both
electrostatic, Hele, and nonelectrostatic, HvdW, contri-
butions (eq 4.2). The nonelectrostatic component
accounts for dispersion and repulsion between QM
and MM atoms and is represented by a van der
Waals expression, as shown in eq 4.3, where S and
X are the total interaction sites in the QM and MM
systems, Asx and Bsx are the van der Waals param-
eters, and rsx stands for the interatomic distance
between the sites s and x, respectively.

The electrostatic interaction energy between the
QM and MM subsystems can be expressed at four
levels of increasing complexity.499 These levels consist
of (i) the interaction between the unperturbed wave
function of the QM subsystem and the nonpolarizable
MM charges, (ii) the mechanical embedding of the
QM region, (iii) the mechanical embedding plus the
polarization of the QM wave function by the perma-
nent field which results from the MM charges, and
(iv) the addition of the polarization of the MM part
to the embedding and polarization described in iii.

At the simplest level there is no coupling between
the QM and MM subsystems. The electrostatic en-
ergy is simply the Coulomb interaction between the
QM electrostatic potential and the MM charges,
which is given by eq 4.4 within the MO-LCAO
framework for a closed-shell system. (The index ‘0’
stresses that the QM wave function is not polarized
by the surrounding MM charges.) Accordingly, these
techniques do not fit into the general notion of QM/
MM methods, even though they are still valuable for
gaining qualitative insight into the reactive charac-
teristics of molecules.500-503

In eq 4.4, µ,ν denote the basis set of atomic orbitals,
Nocc is the number of doubly occupied molecular
orbitals, Pµν is the µν element of the first-order
density matrix, Zs is the effective nuclear charge, rs
and rx are the position vectors for the QM nuclei and
the MM particles, respectively, and Qx stands for the
set of charges that represents the charge distribution
in the MM region.

The next higher level includes the mechanical
embedding of the QM region, as in the IMOMM
method reported by Maseras and Morokuma.504 This
method involves an interpolation between indepen-
dent QM and MM calculations, where the interaction
between the QM and MM subsystems is described
by a force field. Owing to the lack of electronic
embedding of the QM region, these techniques are
more appropriate for studying apolar than polar
systems. However, the model is simple and robust
and can be easily generalized using different layers
treated at suitable (QM or MM) levels of theory.505

These features make this approach very promising
for a variety of chemical systems.

Relaxation of the QM wave function by the electric
field created from MM charges (the third level of
complexity) is achieved by adding the operator shown
in eq 4.5 to the gas-phase Hamiltonian of the QM
subsystem, HQM (eq 4.6). This leads to a pseudo-
Schrödinger equation (eq 4.7), which is solved using
the standard self-consistent process,506 and yields the
total energy of the system (Etot) and the polarized
wave function of the QM subsystem. In eqs 4.5-4.7,
N is the number of electrons, where i,j and s,t denote
electrons and nuclei, respectively, and Ψ is the
normalized wave function that minimizes the energy
of the total Hamiltonian, H, given in eq 4.1.

Finally, the energy of the MM subsystem is deter-
mined by means of the molecular mechanical poten-
tial energy, which generally contains both bonded
and nonbonded terms, as mentioned in section 3.

At the highest level of complexity, relaxation of
the MM charge distribution by the electric field
created from the QM subsystem and from the rest of
MM charges is also included. As pointed out in
section 3, this can be achieved by using the induced
dipole theory and distributed atomic polarizabili-
ties487,494,507,508 in the MM region (see eqs 3.19-3.22)
or by using fluctuating charge models (see eq
3.23).463,465,466,470,507-511 Recently, an alternative method
to capture many-body polarization effects has been
developed for NDDO (neglect of diatomic differential
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Ĥele ) ∑
s)1

S

∑
x)1

X ZsQx

|rs - rx|
- ∑

n)1

N

∑
x)1

X Qx

|r - rx|
(4.5)
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overlap)-HF wave functions.512 In this method, each
individual molecule in the liquid is represented by
an antisymmetric determinant wave function and the
interactions between each molecule and its sur-
rounding molecules are determined by a hybrid QM/
MM approach. Selected parameters are optimized so
that they reproduce the experimental thermodynamic
properties of the liquid, which allows for the correc-
tion of the electron-correlation effects not explicitly
included in the QM calculations.

Because the polarizations of both the MM charges
and the QM wave function are mutually dependent,
the polarization contribution of the whole system
should be determined self-consistently.513,514 Even
though the computational implementation of the
necessary equations is quite straightforward, the
resulting computational process is very time-consum-
ing and cannot be applied to the study of chemical
reactions in biomolecules. Since most of the usual
force fields do not contain polarization terms, only
the relaxation of the QM subsystem is typically
considered. A more reliable approach to QM/MM
methods would be to develop classical polarizable
force fields for use with them (see section 3).

Classical molecular computations often include a
boundary region that simulates the bulk solvent
which surrounds the system of interest. The inclusion
of this boundary region improves the description of
long-range electrostatic effects beyond what can be
achieved using the simple truncation scheme. The
boundary region can be treated by the Ewald lattice-
sum technique, by reaction field approaches, and by
fast multipole methods, as mentioned in section 3.
When employing QM/MM methods, the usual bound-
ary approximations can be used, even though little
attention has yet been devoted to these boundary
effects. Gao and Alhambra recently implemented the
Ewald-lattice-sum method in QM/MM methods.515

Warshel utilized the surface-constrained all-atoms
model,516-518 where the simulation system is sur-
rounded by a spherical boundary of explicit solvent
molecules, which are constrained to have the same
polarization as they would have in an infinite solvent
system represented by an all-atom model.

4.2. Implementation of QM/MM Methods
There is a priori no limit to the level of theory that

can be utilized for the treatment of the QM sub-
system. Thus, implementations of QM/MM hybrid
methods within the framework of ab initio504,519-524

or density functional (DF)522,525-535 methods have
been reported. Although the computational costs of
the ab initio and DF calculations are similar, the
latter has the advantage of including electron-cor-
relation effects. The application of ab initio methods
to the QM/MM formalism requires computation of
one-electron integrals involving the set of MM charges
in the Fock matrix, as shown in eq 4.8, where µ,v
refer to the basis set of atomic orbitals.

Likewise, when DF methods are applied, the
interactions with the MM charges are introduced via
the one-electron Kohn-Sham equations (eq 4.9)
through the external potential ν(r). In eq 4.9, ψi is a
one-electron Kohn-Sham orbital, ei is the associated
eigenvalue, and the Hamiltonian HDF is given by eq
4.10, where F(r) is the electron density, EXC is the
exchange-correlation functional, and ω(r) is the ex-
ternal potential, which adopts the form given by eq
4.11. In eq 4.11, the first and second terms on the
right-hand side represent the interaction of electrons
with the nuclear charges and with the MM charges,
respectively.

Even though the treatment of electrostatic interac-
tions is well defined in both ab initio and DF-QM/
MM methods, the determination of van der Waals
parameters to represent dispersion-repulsion inter-
actions between QM and MM sites (see eq 4.3) is not.
Early QM/MM methods directly transferred the MM
van der Waals parameters to the QM atoms, but this
approach yields erroneous distances between QM and
MM atoms. To overcome this limitation, the van der
Waals parameters for QM atoms have to be repara-
metrized, and this is usually achieved by imposing
the condition that the QM/MM interaction energies
must reproduce the interaction energies of small
clusters or bimolecular complexes which have been
determined at a high level of theory.494,519,536-538 The
use of these optimized QM van der Waals parameters
give better results than does the use of MM values.
However, even these parameters do not transfer well
between very different interacting systems.538 An
alternative option is to fit the van der Waals param-
eters to reproduce the free energies of solvation;539,540

however, these fitted parameters have similar prob-
lems with transferability. On the whole, the transfer-
ability of the van der Waals formalism to the QM
framework appears to be unsatisfactory.

The widespread application of ab initio and DF
implementations of QM/MM methods is limited by
the cost of the calculations. Thus, relatively small
basis sets, typically split-valence sets519,535 supple-
mented with polarization functions,520,526,528,532-534

have to be used. One useful approach is the empirical
valence bond (EVB) method developed by Warshel
and co-workers.414,541,542 In this approach the different
states in a chemical reaction are described in terms
of valence-bond configurations. For practical pur-
poses, the number of resonance structures to be
considered can be reduced using an appropriate
parametrization that retains an accurate description
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of the potential-energy surface for the conversion
from reactants to products. In this calibration pro-
cedure, the elements of the Hamiltonian are calcu-
lated using empirical formulas which depend on the
relative position of the nuclei and contain several
parameters fitted to reproduce experimental (or high-
level theoretical) data either in the gas phase or in
solution. The EVB method has proven to be valuable
in studying a range of reactive processes in biomo-
lecular systems. One example is provided by the
recent work of Bentzien et al.,521 wherein a hybrid
QM(EVB)/MM potential surface is applied to the
prediction of activation free energies for the amide
hydrolysis in subtilisin.

Most QM/MM studies of biomolecules are still
carried out within the framework of semiempir-
ical methods (especially AM1543 and PM3544-546

Hamiltonians).547-570 These studies address a wide
range of concerns, including solvation, conformational
flexibility, spectroscopic processes in solution and in
macromolecules, and chemical reactivity in solution
and for enzymes. However, the use of semiempirical
Hamiltonians in QM/MM methods has some poten-
tial limitations, and these require that the results
be carefully analyzed to validate this computational
scheme.

One major drawback of semiempirical QM/MM
methods is the lack of parameters to describe par-
ticular atoms in the system of interest. Another is
that semiempirical methods do not adequately de-
scribe some types of bonding arrangements.543-546

Various strategies have been designed to overcome
these limitations. In some studies, a mixture of
parameters from different semiempirical QM meth-
ods has been used to describe the QM atoms in the
system.570 Another approach is to reoptimize the
parameters associated with the semiempirical QM
method.571 A third strategy is to scale the semiem-
pirical energy so that it reproduces the free energy
along the reaction path as determined at a high level
of theory.572

An additional limitation of semiempirical QM/MM
methods is that they do not have a clear definition
of the electrostatic potential. In ab initio or DFT
methods, the electrostatic potential is unequivocally
computed from the wave function of the QM system
and the Coulomb operator.573,574 Nevertheless, since
the latest versions of semiempirical Hamiltonians
rely on the NDDO approximation and simplified
functional forms are used to evaluate core-core, one-
electron, and two-electron integrals, several options
for computing the semiempirical electrostatic poten-
tial are available.575-583

Field et al.547 proposed that the electronic contribu-
tion to the electrostatic potential, Vel

QM, can be
obtained using an NDDO-based expression (eq 4.12)
where the Ohno-Kloppman parameters that account
for the damping of classical Coulomb interactions for
the MM atom are assigned a value of zero. Further-
more, for the nuclear contribution, Vnuc

QM, they
adopted an expression related to the core-core
interaction (eqs 4.13-4.15), where only one param-
eter was retained per MM atom type, Rx. This
parameter was set to 5.0 in order to achieve the

highest fit to ab initio data.

In eq 4.12, sx denotes a notional s orbital placed on
the MM atom and µ and ν are atomic orbitals
centered on the QM atom. In eqs 4.14 and 4.15 R, K,
L, and M are parameters that depend on the atom
type.

Thompson513 used a similar approach to that taken
by Field et al., with the main difference being the
exclusion of Gaussian expansion terms in the func-
tion g(s,x) for both QM and MM atoms. Ford and
Wang584 and Bakowies and Thiel585 also ruled out
Ohno-Klopman parameters for the MM atom and
the Gaussian expansion terms. They did, however,
introduce parameters (ωs and δs) into the exponential
function f(s,x) (see eqs 4.16a and 4.16b) which were
optimized to reproduce the HF/6-31G(d) electrostatic
potential and field in suitably chosen regions of space.

In the approach reported by Vasilyev et al.,586 a
scaling parameter (0.095 for MNDO and AM1, 0.097
for PM3) was introduced to correct the magnitude of
the Ohno-Kloppman factor and the extra terms in
the core-core energies were omitted. In agreement
with the formalisms adopted in several self-consistent
reaction field models,587,588 Cummins and Gready
used expressions where the Ohno-Klopman param-
eters for both QM and MM atoms were set to
zero.539,540 They also omitted the functions f(s,x) and
g(s,x), so that the interaction energy followed a pure
Coulombic model. Finally, Théry et al.589 adopted an
approach whereby the electronic contribution follows
the usual semiempirical expression without any
additional simplification, but the nuclear contribution
to the interaction energy of a MM site is expressed
as the addition of two terms (eq 4.17). These terms
represent the interaction between the QM core and
the core, Zx, of a classical pseudo-atom bearing an
“implicit electronic population” given by Px ) Zx -
Qx. In eq 4.17, the first term corresponds to the
semiempirical core-core repulsion for QM and MM
atoms with core charges Zs and Zx and the second
term represents the interaction between the quantum
core Zs and the implicit electron population of the
classical atom, Px.
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As can be seen from the preceding discussion, the
expression used must be chosen to balance the
electronic and nuclear contributions to the QM/MM
electrostatic interaction energy. Otherwise, the qual-
ity of the results for the semiempirical QM/MM
method, which depend on the systems and properties
investigated, could be affected.

4.3. Separating QM and MM Regions
Regardless of the level of theory applied to the QM

subsystem, QM/MM methods always require separa-
tion of the QM and MM subsystems. Clearly, a
natural separation exists for processes involving
small solutes in solution, since the solute is treated
quantum mechanically and the solvent molecules
form the MM region. However, the way in which the
system should be partitioned for chemical reactions
in biomolecules is less obvious. In this case, the
division between the QM and MM subsystems neces-
sarily implies partitioning covalent bonds, and this
leads to serious methodological problems. Different
strategies have been proposed to overcome this
difficulty.

The early QM/MM methods followed the “link
atom” approach,488,489,547 which defines an additional
“nonphysical” link atom, typically a hydrogen, in the
QM portion to satisfy the free valence of the broken
covalent bond that separates the QM and MM
regions. Unfortunately, the use of this approach in
QM/MM calculations presents several drawbacks.499,590

Since the link atom is included in the self-consistent
treatment of the QM subsystem, explicit corrections
to the energy must be made to account for any
interactions involving the link atom. In addition,
there is some controversy over how to treat the QM/
MM interactions involving the link atoms. Likewise,
the link atom corrections work reasonably well for
geometries close to the optimized QM structures, but
they are not suitable for geometries far from the
minimum, where they can yield artificial results from
geometry optimization calculations. Finally, this ap-
proach can also lead to unstable simulations, which
require consistent total energies and gradients.

An alternative option, which minimizes the arti-
facts resulting from the separation of the QM and
MM regions, was reported by Maseras and Moro-
kuma.503 In their approach, the QM subsystem is
saturated with link atoms and optimized and then
the MM subsystem is also optimized in the presence
of the frozen QM fragment. This process is repeated
until the energy of the entire system converges.
However, this multistage approach does not repro-
duce the coupling between the QM and MM regions
in the optimization process. To solve this problem,
Bersuker et al.591 suggested using an additional,
intermediate QM region to smooth the transition
between the QM and MM subsystems.

A different approach to partitioning the QM and
MM regions was adopted by Warshel and Levitt,487

who included a single hybrid orbital with a single
electron for each of the QM atoms at the junction
between the QM and MM regions. The remaining
interactions for these atoms were treated using MM
terms. Similarly, the group at Nancy has proposed
using the local self-consistent method592 to treat
frontier bonds. The basic assumptions of this method
are (i) that these bonds have constant and well-
defined properties and (ii) that each is a simple bond
and can be described by a strictly localized bond
orbital. This orbital is expressed as a linear combina-
tion, with constant coefficients, of two well-defined
hybrid orbitals, one on each atom of the bond. The
orthogonal hybrid orbitals determined for small
model compounds are assumed to be fully transfer-
able, so that they can be kept frozen in the actual
QM/MM calculation. This approach is easy to imple-
ment in semiempirical QM/MM methods592,593 but
becomes more complex in ab initio methods.594 A
generalization of the local self-consistent approach
has recently been reported by Gao et al.595

The division between QM and MM regions is
obviously a key factor in the application of QM/MM
methods to the study of chemical processes in bio-
molecules. As a general guideline, the QM/MM
boundary should be as far away from the reactive
center as is computationally feasible in order to
minimize results. However, this is not always pos-
sible and appropriate procedures that provide well-
defined QM/MM potential-energy surfaces for mod-
eling large systems need to be further examined.

4.4. QM/MM in Molecular Dynamics and Monte
Carlo

Since analytical expressions are available to handle
each of the different contributions to the total energy
of the system, the forces acting on the atoms can then
be calculated from the derivatives of the energy with
respect to the coordinates of QM and MM atoms (eqs
4.18a and 4.18b, where R stands for each of the
Cartesian coordinates of QM and MM atoms). This
derivation is quite straightforward, especially if non-
polarizable potentials are used. The resulting energy
and the associated forces can be applied to geometry
optimizations and molecular dynamics simulations.

QM/MM models are even more easily implemented
with Monte Carlo codes. However, this approach can
be less efficient because the energy and wave function
of the QM subsystem must be recomputed for each
new configuration. (Note that for equivalent calcula-
tions the number of different configurations gener-
ated by MC methods is always severalfold larger than
those generated by MD techniques.) Strategies used
to reduce this problem include (i) the use of spherical
cutoffs, such that solvent movements outside the
cutoff radius do not affect the QM wave function,
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even though the total energy is affected, and (ii)
repetition of the SCF calculations only when the
solute moves.573

The implementation of QM/MM methods using
either molecular dynamics or Monte Carlo ap-
proaches allows the potential-energy surface to be
sampled in exactly the same way as with purely
classical methods, as mentioned in section 3.

4.5. Recent Advances
A series of very recent studies have focused on new

procedures to minimize some of the problems of QM/
MM methods and to expand their range of applicabil-
ity.

The accuracy of QM/MM methods largely depends
on the characteristics of the coupling Hamiltonian
used. As already noted, one of the procedures utilized
to improve the QM/MM Hamiltonian is to reparam-
etrize the Lennard-Jones parameters on QM atoms
so that they reproduce high-level theoretical results
for molecular complexes. A recent study has raised
the question of whether the parameters derived from
molecular complexes are really suitable for condensed
matter simulations.596 The results show that the
choice of the van der Waals parameters for QM atoms
has a large effect on the QM/MM results. More
surprisingly, the authors show that parameters fitted
to small complexes lead to rather weak coupling
between the QM and MM molecules. These results
stress the need to carefully select the van der Waals
parameters for the QM subsystem and suggest that
more appropriate procedures should be designed for
that purpose.

Better partitioning schemes for the junction be-
tween the QM and MM regions might be obtained
by using the alternative pseudo-bond method.597

Instead of using a hydrogen atom to saturate the free
valence as in the link-atom approach, the pseudo-
bond approach forms a pseudo-bond with the QM
atom by replacing the MM atom in the broken
covalent bond with a one-free valence boundary atom
(Xps) that has a parametrized effective core potential.
The Xps atom is included in the QM subsystem and,
except for the MM atom of the frontier covalent bond,
the rest of the atoms in the environment form the
MM subsystem. In designing the effective core po-
tential of Xps, the pseudo-bond QM-Xps is made to
mimic the original QM-MM frontier bond, such that
it has a similar bond length and strength as well as
similar effects in the rest of the QM regions. Like-
wise, to ensure charge consistency and to avoid false
electrostatic interactions, a zero-point charge is as-
signed to the MM atoms directly bonded to or up to
two bonds away from the QM subsystem. Unlike the
link-atom approach, this method does not consider
any additional atoms and avoids double counting of
the interactions. Thus, it provides a consistent defini-
tion for the energy and forces of the whole QM/MM
system.

The adjusted connection atom method developed
by Antes and Thiel598 is another recent approach to
dividing a system into its QM and MM parts. This
method is conceptually similar to the preceding
pseudo-bond approach. The adjusted connection atom

replaces the MM atom in the frontier covalent bond
and can be regarded both as an especially param-
etrized QM atom that is able to interact with the
other QM atoms and as a standard MM atom that is
able to interact with the other MM atoms. Following
the implementation of this approach using semiem-
pirical methods, the parameters for the connection
atom are calibrated to reproduce theoretical QM
reference data such as energies, geometries, dipole
moments, and charges. This parametrization ensures
that the adjusted connection atom remains at ap-
proximately the same position as the MM atom that
it replaced in the frontier bond and that it maintains
similar electronic properties in the QM subsystem.
As noted for the pseudo-bond method, no additional
atoms are incorporated into the original system; thus,
any double counting of the interactions is avoided and
well-defined potential-energy surfaces are obtained.

Many current studies are aimed at increasing the
efficiency of the configurational sampling in QM/MM
simulations. This sampling is seriously hindered by
the cost of the QM/MM calculations, since relaxation
of the QM region by the MM electric field requires
millions of SCF calculations. An alternative strategy
suggested for QM/MM methods coupled to Monte
Carlo techniques is to introduce polarization effects
by means of a perturbational treatment, referred to
as generalized molecular interaction potential with
polarization (GMIPp).599,600 This treatment, which
was developed on the basis of the original work by
Francl,601 avoids recalculating the wave function of
the QM subsystem for each configuration of the MM
subsystem. This is achieved by using a perturbative
expression to evaluate the polarization of the QM
subsystem by the MM charges, as noted in eq 4.19,
where ε denotes the molecular orbital energies and
cµi is the coefficient of atomic orbital µ in the molec-
ular orbital i. Computer time also can be saved by
choosing suitable cutoffs for the energy differences
between occupied and virtual orbitals and for the
integrals in eq 4.19. This approach is currently used
with ab initio QM/MM methods.602

Finally, the application of QM/MM methods has
been extended to study dynamic effects in an enzyme-
catalyzed reaction. In this example, the semiclassical
variational transition-state theory with multidimen-
sional tunneling contributions237,238,603 was applied to
the QM/MM potential-energy surface for the proton-
transfer reaction in yeast enolase.604 This combined
treatment provides an alternative to current ap-
proaches and allows the inclusion of quantum effects
on enzyme reactions.605-607

5. Empirical Approaches
Empirical methods treat the solvent at a very low

computational cost by employing simple equations
together with parameters fitted to experimental data
or to high-level calculations. For the study of biologi-
cal systems, empirical methods have been developed
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at two levels: (i) screening of the electrostatic inter-
actions between the elements of the system and (ii)
solvation of each element of the system. Only some
of the most common empirical approaches will be
outlined here.

5.1. Methods for Electrostatic Screening
The solvent molecules surrounding a solute reori-

ent their charge distribution to react against the
solute charge distribution. This generates a reaction
field which modulates the interaction of the solute
with other molecules (see Figure 3). The magnitude

of the electrostatic interactions is thus reduced, since
the orientation of the solvent molecules opposes the
electric field generated by the solute.

For homogeneous solvents and very dilute solu-
tions, the screening effect could be represented
using a macroscopic dielectric constant (eq 5.1, where
i and j denote two atoms of the solute separated by
a distance of rij). Unfortunately, for biologically
relevant systems, the effective dielectric constant
depends on the distance between the charged
groups.75,354,608,609 When two atoms are close to each
other, solvent molecules cannot fill the space between
them and their microenvironment is similar to that
of a gas phase. However, when two atoms are far
apart, solvent molecules fill the space between them
and screen their electrostatic interactions.

The solvent screening effect can be modeled by
replacing the macroscopic permittivity with a distance-
dependent dielectric function, of which linear depen-
dence is the simplest formalism.610-616 Thus, ε is
defined as shown in eq 5.2, where EPS is a constant
factor that is generally assigned values from 1 to 4.5.
This type of dielectric function was widely used in
early MD simulations of nucleic acids and proteins
when implicit solvent molecules were not used.

Warshel (eq 5.3)76 along Olson and co-workers
(eq 5.4)617 developed more complex functions in
which the permittivity changes exponentially with
the distance. The factor (1 ( 0.5) in eq 5.3 was
introduced to account for variations in ε(rij) for
different systems.

Hingerty and co-workers618 developed a sigmoidal
function to calculate the dielectric response (eq 5.5)
based on Debye’s theory of ionic saturation. Their
method, which can reproduce interactions between
small nucleic acids and ions in aqueous solution, has
become the basis of the latest dielectric functions. In
eq 5.5, â ) exp(rij/R) and the parameters D and R are
78 and 2.5 for aqueous solutions, respectively.

Ramstein and Lavery (eq 5.6)619 slightly modified
Hingerty’s function and parametrized it to reproduce
the energy profile of conformational movements in
DNA. In eq 5.6, D is 78 (aqueous environments) and
R is a parametrized constant that ranges from 0.16
to 1.2619-621 for hydrated macromolecules. Other
authors, after additional slight modifications of the
expression, derived parameters for it by fitting them
to Poisson-Boltzmann or MD simulations with ex-
plicit solvent.620,621 This method yielded reasonable
representations of the electrostatic interactions in
DNA structures.

Mehler and Solmajer622 developed another sigmoi-
dal dielectric function (eq 5.7) to describe the elec-
trostatic interactions in proteins, and this has been
successfully used to predict the binding of small
molecules to proteins.623-626

where

Distance-dependent dielectric functions are an
inexpensive way to qualitatively treat screening
effects in macromolecules. Thus, they were widely
used in early MD simulations and are still currently
used when modeling ligand docking.623-630 However,
these functions cannot always be used to simulate
the dielectric response. Indeed, they do not yield any
information about the solvation of each individual
element of the system, which limits their ability to
predict the behavior of molecules in solution.

5.2. Methods for Group Solvation

5.2.a. Methods Based on the Molecular Topology
To a first approximation, the free energy of solva-

tion can be determined from empirical parameters
that represent the intrinsic solvation properties of the
constituent groups on the molecule (eq 5.8, where gk

Figure 3. Schematic representation of the solvent screen-
ing effect.
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is the intrinsic solvation parameter of a given group,
k). This is called a fractional approach and has
seldom been used to compute solvation free energies.
However, it is a popular method for calculating
transfer free energies and partition coefficients (see
section 2.1), which are primarily used in molecular
modeling studies to represent the partition of a solute
between water and organic environments such as
biological membranes.22,104-106,631-634

Fractional methods were first developed in the
1960s and 1970s. Early models by Leo and Han-
sch22,104,106,631 and Rekker632,633 were used to predict
the partition coefficients for series of aromatic or
aliphatic molecules. These methods were improved
by introducing corrections for the effect of molecular
topology on the hydrophobic characteristics of each
group.105,106,634 Algorithms based on fractional con-
stants have been implemented in many computer
programs, where they can be used to estimate parti-
tion coefficients.634-644 These methods give acceptable
results for 40-70% of the molecules studied. How-
ever, they can only be applied to molecules similar
to those used in the parametrization data set. A
detailed, critical comparison of the most popular
algorithms can be found in ref 634.

5.2.b. Methods Based on the Solvent-Accessible Surface
Equation 5.8 has been improved by assuming that

the atom/group contribution to the solvation free
energy depends on the exposure of the solute to the
solvent as well as on the intrinsic solvation properties
of the system (eq 5.9, where σk is the solvation
parameter of the residue k per unit area and Ak is
its solvent-accessible area). This implies that geo-
metrical and environmental effects have to be con-
sidered when determining the free energy of solva-
tion. Because of their formal simplicity, methods for
computing solvation (or transfer) free energies which
are based on the calculation of the solvent-accessible
surface have been widely used to study solvent effects
in proteins.645,646 Thus, in the early 1970s, Chothia645

exploited experimental data reported by Nozai and
Tanford646 to suggest that the solvation free energy
of a protein could be computed from the solvent-
accessible surface of its residues. A general empirical
factor, σ (eq 5.9), equal to 24 cal/(mol Å2)was used to
compute the protein hydrophobicity from the solvent-
accessible surface of its residues.645

On the basis of Chothia’s ideas, Eisenberg and
McLachlan647 determined the octanol/water transfer
free energy of a protein using the solvent-accessible
surface of individual atoms in the protein (eq 5.10).
In eq 5.10, z stands for an atom type, Nz is the
number of atoms per atom type, and k represents an
atom of the protein. Empirical parameters for each

atom type (-C, N(O), O-, N+, and S-) were developed
using Fauchere and Pliska’s estimates of each resi-
due’s partition coefficient.648

Scheraga and co-workers649 developed a model
whereby the hydration free energy of a protein was
determined from the contributions of its various
small functional groups. Empirical parameters were
determined from the hydration free energies of small
molecules containing the groups of interest.650,651

Methods based on the solvent-accessible surface
present several shortcomings: (i) the calculation of
the solvent-accessible surface is not very efficient, (ii)
the suitability of fitting solvation parameters for
groups on proteins to experimental data for small
molecules is unclear, (iii) the solvent screening of
intrasolute interactions is neglected, and (iv) the
electrostatic contributions to solvation are not ex-
plicitly treated.

Even when analytical methods652-655 and other
efficient algorithms656-659 are utilized, the calculation
of solvent-accessible surfaces is not fast enough to
allow its efficient implementation in docking, MC, or
MD methods. (For a discussion of this limitation, see
ref 659.) Thus, faster hydration shell models have
been developed. In these models the solute’s exposure
to the solvent is represented without an explicit
calculation of the solvent-accessible surface, which
is permissible since the solvent effect primarily arises
from the interaction of the solute with the first
hydration shell.338,660-672 This approach reduces the
cost of evaluating the solvation free energy compared
to models based on the solvent-accessible surface,
with only a moderate loss of numerical accuracy.660-667

Hydration shell models assume that the free en-
ergy of solvation is a function of the solvation of the
different groups in the molecule. The solvation of
these different groups in turn depends on (i) the
intrinsic hydration potential of the group and (ii) the
number of solvent molecules excluded from the
hydration shell of a group by other nearby groups.
This is noted in eq 5.11, where (r) is added to stress
that the group contribution depends on the molecular
geometry.

The intrinsic contribution of the group (∆Gref; see
eq 5.12) is equal to the solvation free energy of the
group when it is fully exposed to the solvent. The
effect of the surrounding groups on the solvation of
a group k depends on the size of vicinal groups and
their distance from that group k. These factors can
be quickly calculated using algorithms such as those
recently developed by Lazaridis and Karplus (eq
5.12).338,660 In eq 5.12, Vj is the volume of group j and
fk(r) is a Gaussian function of the distance between
the groups, as shown in eq 5.13, where Rk is the van
der Waals radius of group k and λk is taken as the
thickness of the first hydration shell. Rk is given by

∆Gsol ) ∑
k)1

N

gsol
k (5.8)

∆Gsol ) ∑
k)1

N

σkAk (5.9)

∆Gtransfer ) ∑
l)1

Z

∑
k)1

NZ

RkxAkz (5.10)

∆Gsol ) ∑
k)1

N

∆Gsol
k (r) (5.11)
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eq 5.14, where ∆Gk′ is determined by assuming that
the solvation contribution of a totally buried group
is zero.660

An even simpler formalism that is related to
Lazaridis’ and Karplus’ hydration shell model has
been developed by van Gunsteren and co-workers.367

According to their method, the solvation effect is
represented by a mean potential term (eq 5.15),
which is added to the force-field potential energy.
This function accounts for the work needed to par-
tially desolvate an atom or a group and depends on
(i) the intrinsic solvation of the atom or group, (ii)
their sizes, (iii) the size of the solvent molecule, and
(iv) the distance between the atoms or groups.

In eq 5.15, rij is the distance between the atoms or
groups i and j, R1

ij is the distance at which desolva-
tion is complete, and R2

ij is the distance at which
solvation is complete. The parameters R1

ij and R2
ij

depend on the size of both the solvent molecules and
the atoms or groups of the solute and are derived
from experimental aqueous second virial coefficients
for small molecules.

As noted above, one drawback to these methods is
that they require a specific parametrization process.
Most authors adopt values derived from experimen-
tally determined solvation (or transfer) free energies
of small systems.367,645-667 However, the transfer-
ability of these “physically based” parameters to large
molecules is not guaranteed, which has led to the
adoption of “statistically based” parametrization
processes in their place.668-673 In statistically based
processes, the parameters are systematically modi-
fied to ensure that specific properties of the macro-
molecules are reproduced, which allows not only
solvation parameters but also other interaction pa-
rameters to be fitted. Statistically based parameters
have been used to discriminate between the native
and nonnative structures of proteins and to examine
protein folding.668-673 However, they are difficult to
implement in force-field methods. Furthermore,
whether they provide a more accurate description of
solvation than do methods that rely on physically
based potentials remains unclear.668,674

The use of eq 5.11 implies that solvent screening
of the solute’s Coulombic interactions and its effect
on the intramolecular energy is neglected. Thus,
intrasolute charge-charge interactions are overes-
timated, yielding an inaccurate potential energy for
the system. This can be solved by using (i) distance-
dependent dielectric constants (for example, see refs
367 and 660) or (ii) more detailed expressions for the
electrostatic component of the solvation free energy
(see below).

Finally, methods based on solvent-accessible sur-
faces or hydration shells omit the explicit treatment
of electrostatic interactions, which are expected to be
accounted for during the parametrization process.
The intrinsic solvation characteristics of a given atom
or group depend on the nature of the neighboring
atoms or groups, and the positions of these neighbor-
ing atoms or groups can change. Obviously, these
effects can be included by explicitly considering their
electrostatic contribution to solvation (see below), but
many empirical methods introduce them implicitly
by defining several different parameters for an atom
that depend on what atoms or groups are attached
to it (for example, see refs 337, 660, 661, and 664). A
more complex strategy has been developed by Cramer
and Truhlar in their SM5.0R model.675 This method
assumes that the solvation free energy can be deter-
mined using an expression similar to eq 5.10 (k
stands for an atom in the molecule) but where the
solvation parameter σk depends on the position and
nature of the remaining atoms (eq 5.16).

In eq 5.16, k is an atom of type i, σi
0 stands for the

intrinsic solvation parameters of a type i atom, and
f is a complex function which depends on the atom
type. For example, the σk of a hydrogen atom is
computed as shown in eq 5.17, where T(Rkj) is a
switching function (eq 5.18) that controls the effect
of atoms close to atom k and σHj is an empirical
coupling constant. Thus, the atomic solvation param-
eters for each atom depend on their environment, and
this allows for fine control of the environmental
effects on the solvation characteristics, even though
it also requires a complex parametrization process.

The SM5.0R model was parametrized to reproduce
the free energy of solvation in small- and medium-
sized organic molecules. Whether it also reliably
represents solvation free energies in proteins or
nucleic acids remains to be determined.

6. Continuum Electrostatic Methods
When polar solutes are placed in polar solvents,

the largest contribution to solvation comes from

∆Gsol
k(r) ) ∆Gref

k - ∑
j*k

fk(rjk)Vj (5.12)

fk(r) )
Rk

4πr
exp -[(r - Rk
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1/2 (5.14)

Vmean(rij) ) Vdes
ij if rij < R1

ij

Vmean(rij) )

Vdes
ij{1 - [ (rij - R1

ij)

(R2
ij - R1

ij)]2}2

if R1
ij e rij e R2

ij
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T(Rkj) ) 0 otherwise

4204 Chemical Reviews, 2000, Vol. 100, No. 11 Orozco and Luque



solute-solvent electrostatic interactions. These can
be treated by classical or QM/MM MC or MD simula-
tions that use a discrete description of the solvent.
Alternatively, the electrostatic effects can be ac-
counted for by using the theory of polarizable fluids,
where the solvent is treated as a continuum environ-
ment.

Continuum electrostatic methods can be divided in
two families, depending on the description (QM or
classical) of the solute. If a QM formalism is used,
the solvation free energy is determined as noted in
eq 6.1,3,4,489,676-684 where Ψ is the solute wave func-
tion, H° is the solute Hamiltonian, VR is a perturba-
tional operator representing the solvent reaction
field, and the indexes ‘0’ and ‘sol’ represent gas-phase
and solvent environments, respectively. It should be
noted that the solute wave function and the reaction
field are interdependent in this formalism, which
makes it necessary to treat their mutual coupling
using self-consistent procedures.

Many QM continuum (also called self-consistent
reaction field; SCRF) methods have been developed.
(For key references, see refs 3, 4, 85-87, 489, and
685-688.) The main differences between these meth-
ods concern (i) the definition of the solute/solvent
boundary, (ii) the representation of the solvent reac-
tion field, and (iii) the description of the solute charge
distribution. SCRF methods are valuable for examin-
ing the solvent effects on small- and medium-sized
molecules, and the latest versions estimate the free
energy of solvation for large series of molecules with
mean errors of less than 1 kcal/mol for water and
even less for apolar solvents. However, their general
application is limited by the need to perform a QM
calculation on the solute, which is not affordable for
large solutes such as biomacromolecules. Since SCRF
methods have recently been reviewed by different
authors,3,4,85,86,449,450,677,678,682,686-688 we will omit a
detailed discussion of these methods and instead
refer the reader to refs 3, 4, 85, 677-679, and 682
for a comprehensive explanation of the basic formal-
ism, to refs 3 and 4 for revisions of recent applica-
tions, and to refs 449, 450, and 688 for a comparison
of these SCRF methods with other methods.

In the following, we shall limit our attention to
classical continuum treatments of the solvent effect
in biomolecular systems. However, we first briefly
analyze the partitioning of the free energy of solva-
tion into several contributions, typically cavitation,
electrostatics, dispersion, and repulsion (see section
2). This partitioning scheme is very convenient from
a computational point of view. In fact, it constitutes
the strategy (with some degree of flexibility) generally
adopted by the latest versions of QM continuum
models.3,4 This strategy was outlined in early works
by Huron and Claverie82-84 and by Bonnaccorsi et
al.689 Nevertheless, alternative computational proce-
dures have recently been devised whereby the elec-
trostatics, dispersion, and repulsion are collectively
computed.690,691

According to statistical mechanics, the free energy
of solvation can be obtained by using a charging
process, as given in eq 6.2, where VXS is the full
interaction potential between the solute and solvent,
gXS is the correlation function, Fs is the solvent
density, and λ is a charging parameter.691,692 By
varying the value of λ from 0, where the solute-
solvent interaction is switched off, to 1, where the
interaction is completely active, one can compute the
reversible work associated with charging the solute
in the solvent.

Assuming that the interaction potential VXS con-
tains the four contributions mentioned above, eq 6.2
can be solved by resorting to four consecutive inte-
grations, each of which is associated with a different
charging parameter. These are (i) a parameter re-
lated to a length for cavitation,693,694 (ii) a parameter
associated with the electric charge for electrostatics,88

(iii) a parameter related to the electron transition
densities for dispersion,695,696 and (iv) a parameter
related to the electron overlap for repulsion.696 The
order of these separate charging processes must be
chosen so as to reduce any possible couplings between
the components of VXS (see refs 691 and 692 for more
details). The most important solvent reorganization
effects that are due to inclusion of the solute are
generally associated with cavitation and electrostat-
ics. The coupling between the electrostatic and
dispersion effects appears to be small, at least for
neutral solutes.696 Finally, since cavitation contains
the largest portion of the repulsion terms present in
the free energy of solvation, the coupling of the
repulsion contribution with the other terms is ex-
pected to be small. In our opinion, more research is
necessary to determine the relative couplings be-
tween the different contributions as well as their
effect on the solute properties. Indeed, this informa-
tion could be exploited to refine the theoretical
methods by which molecules in biological systems are
studied.

6.1. The Classical Electrostatic Problem
Classical continuum methods assume a classical

treatment of the solute charge distribution. The
solute is placed in the interior of a cavity in a
polarizable continuum medium, which is character-
ized by the solvent dielectric constant (εs). Permit-
tivities in the interior of the solute cavity (εint)
generally range from 1 to 8. The electrostatic com-
ponent of the free energy of solvation is estimated
as one-half of the solute-solvent electrostatic inter-
action energy, according to linear response theory.88

The differences between the continuum electrostatic
models mainly consist of their definitions of the
solute/solvent boundary, whether they include ionic
screening, and how they calculate the solute-solvent
electrostatic interaction energy.

The starting point for the development of con-
tinuum models is Poisson’s equation (eq 6.3), which
relates the electric displacement to the charge den-
sity. In eq 6.3, F is the charge density and D(r) is the

∆Gele ) 〈Ψsol|Ĥ0 + 1
2

V̂R(Ψsol)|Ψsol〉 - 〈Ψ0|Ĥ0|Ψ0〉
(6.1)

∫0
1

dλ ∫ dr[FSVXS gxs(r,λ)] (6.2)
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electric displacement as defined in eq 6.4, where Φ-
(r) is the electrostatic potential and ε(r) is the
dielectric constant.

Some authors have developed versions of this
method whereby two different dielectric constants are
used to define different parts of the solute.697,698

Likewise, procedures for treating inhomogeneities
and anisotropies in the solvent have also been
reported.3,699-705

The total charge density includes the solute charge
distribution inside the cavity (Fint) and the charge
density generated by the ion atmosphere outside the
cavity (Fext) in solutions where the ionic strength is
not zero (eq 6.5). It should be noted that it is easy to
fulfill the requirement that the cavity include all the
solute charge distribution using classical methods
whereas it is quite complex at the QM level.3

The charge density due to the ionic atmosphere can
be approximated at equilibrium by a Boltzmann
distribution, as shown in eq 6.6, where κ is the
inverse Debye-Hückel length and is defined in
Gauss units, as shown in eq 6.7. In eq 6.7, Na is
Avogadro’s number, e is the charge of the electron, I
is the ionic strength, k is Boltzmann’s constant, and
T is the temperature.

The Poisson-Boltzmann equation can be expressed
in three different forms depending on the ionic
strength: (i) for no ionic atmosphere (eq 6.8), (ii) for
a low ionic strength (i.e., the sinh(Φ(r)) function is
replaced by the first term of a Fourier expansion, eq
6.9), and (iii) for ionic strengths requiring a general
nonlinear expression (eq 6.10).

Solving these equations yields the total electro-
static potential at any point (Φi) as well as the
electrostatic free energy of solvation given by eq 6.11,
where the indexes ‘sol’ and ‘0’ refer to the solution
and the gas phase, respectively, and qi stands for the
classical point charges used at the classical level of
computation to represent the solute charge distribu-
tion. The electrostatic free energy of solvation can be
obtained from two independent calculations, one with

a dielectric constant of 1 inside and outside the cavity
(Φ0) and the other with a dielectric constant of 1
inside the cavity and εs outside the cavity.

Unfortunately, the solution of Poisson (or Poisson-
Boltzmann) equations is difficult for systems of
interest, which has prompted the development of the
numerical treatments that are briefly reviewed in the
following section.

6.2. Numerical Methods for Solving the Poisson
Equation

One numerical approach to the differential Pois-
son-Boltzmann equations (eqs 6.8-6.10) is to divide
the system into small elements and then apply finite
elements theory to them.697 This procedure was
adapted by Orttung to solve eq 6.8 for a general
molecule698,706 and was then used to determine the
relative pKa values of small molecules. The method
is simple and robust, but only a few applications of
it have been reported in the literature.698,706-708

The finite-difference approach,352,353,356,709-716 which
involves mapping the molecule on a 3-D cubical grid,
is a more popular method. According to this treat-
ment, the Poisson-Boltzmann equation is satisfied
at each grid point and all the derivatives are numeri-
cally computed. By integrating the Poisson-Boltz-
mann equation over a small box centered on each grid
point, and applying the divergence theorem, the
potential at each given grid point, k, can be computed
as shown in eq 6.12.352,353

The sum in eq 6.12 encompasses the six grid points
(i ) 1, .., 6) surrounding the grid point k. qk is the
charge assigned to grid point k (qk ) FkL3), and L is
the spacing of the cubic grid. N is equal to 0 when
the ionic strength is zero (eq 6.8), to 1 when the ionic
strength is small (eq 6.9), and to sinh(Φk) in all other
cases (eq 6.10).

According to eq 6.12, the potential at each grid
point depends on the potential at the surrounding
grid points, which means that an iterative solution
must adopted. This self-consistent process can be
difficult to achieve due to several different technical
problems. Thus, the assignment of charges to cubic
grids is not trivial, and smoothing algorithms such
as the trilinear weighting function should be used to
avoid discontinuities in the charge distribution.717,718

Another problem with this method is the discontinu-
ity of the dielectric constant which occurs at grid
points located close to the cavity boundary.719 The
definition of an electrostatic potential first guess is
also delicate, especially at the external faces of the
grid,718,719,721 and there are numerical problems re-
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lated to the grid size which can be alleviated using
the focusing strategy reported by Honig’s group.718,721

Finally, much work has been devoted to the develop-
ment of efficient algorithms for reaching convergence
in the calculations.722,723

Finite difference methods have been implemented
in several computer programs, including MEAD,709,710

DELPHI,352,720 UHBD,724 and others,725,726 and these
methods are widely used to study solvation in mac-
romolecules. (For comprehensive reviews, see refs
352, 356, 711, and 716.) The applications for which
these methods have been used include calculation of
electrostatic potential,727 ligand binding,728-730 redox
potentials,731 solvation,732-735 solvent-induced confor-
mational shifts,736 and protein structure and flex-
ibility.294,295,737 Finite difference Poisson-Boltzmann
techniques have been very successful in determining
the pKa of protein residues,714,738-746 which is com-
plicated by the interdependence of the ionization
states of the titrable groups on the protein.

Currently, Poisson-Boltzmann calculations are
complemented by approximate methods for the evalu-
ation of steric contributions to solvation. These ap-
proximate methods are based on empirical linear
expressions related to the solvent-accessible surface
(see section 5), which permits the total free energy
of solvation to be estimated with a similar accuracy
to those obtained from discrete calculations.732,735,747

These results suggest that finite-difference Poisson-
Boltzmann calculations could be used in dynamics
calculations, thus avoiding the need for explicit treat-
ments of the solvent molecules (see above). In fact,
Poisson-Boltzmann methods already have been
used in conjunction with Brownian dynamics al-
gorithms.748-751 However, the implementation of Pois-
son-Boltzmann methods in MD protocols has been
hampered by the need for fast and accurate calcula-
tions of the solvation forces at each step of the
trajectory, even though efficient methods for the
calculation of these forces have been recently re-
ported.752,753

Despite the success of finite-difference Poisson-
Boltzmann calculations, a few words of caution
concerning the accuracy of ∆Gele are in order. First
of all, numerical uncertainties occur when large
molecules and sparse grids are used. Furthermore,
the intrinsic shortcomings of the Poisson-Boltzmann
equation should be emphasized. One problem with
these methods is that they assume that the solvent
is a continuum, an approach that can be too crude
in cases where not all the solvent molecules have the
same relaxation properties. This problem may affect
proteins, since the structural solvent molecules are
frequently tightly bound to the macromolecule, and
accordingly do not have the same ability as bulk
solvent molecules to reorient in response to an
external field.

A second problem with these methods involves the
definition of the dielectric constant for the solute. A
dielectric constant of 1 can be used for small solutes
treated at the QM level, but it is not suitable for a
classical description of macromolecules since it ne-
glects (i) electronic polarization effects and (ii) po-
larization effects related to field-induced nuclear

reorientations in the macromolecule. Dielectric con-
stant values ranging from 2 to 8 are typically used
to represent the dielectric responses of macromol-
ecules, which introduces some degree of arbitrariness
into the calculations. Furthermore, it is unclear
whether these isotropically averaged values can
capture the complex, largely anisotropic dielectric
response of a macromolecule. This uncertainty might
be alleviated by using Boltzmann samplings of struc-
tures, which are obtained from MD or MC simula-
tions that consider explicit solvent as inputs for the
classical continuum electrostatic calculations. This
would allow at least part of the dielectric response
to be taken into account in the structures collected
during the sampling.

A third source of uncertainty in these methods
involves the definition of the solute cavity, both in
terms of its shape and size. A molecular-shaped
cavity (such as is used in finite-difference Poisson-
Boltzmann methods) guarantees a better representa-
tion of solvation than a simple spherical cavity.
However, there are no clear rules for determining the
proper size of the cavity. In practice, the solute cavity
is defined by empirical atomic radii corrected using
empirical scaling factors or by an empirical dielectric
offset distance. The size of the cavity should then be
parametrized for each solvent by fitting it to experi-
mental data. However, in most cases the same cavity
definition, which is typically optimized for water, is
used for all solvents.

A final problem with finite-difference Poisson-
Boltzmann methods, as well as with many other
continuum electrostatic calculations, is that they
assume that there are no changes in the geometry
of the solute upon solvation. This is a reasonable
assumption for small solutes, but it is incorrect for
large macromolecules, whose conformation should
change dramatically upon solvation. In summary,
methods based on the numerical solution of the
Poisson-Boltzmann equation are extremely useful
but caution must be taken in using the results
obtained with these techniques.

6.3. Methods Based on Multipole Expansion in
Simple Cavities

Poisson’s equation can be analytically solved for
simple solutes. The electrostatic component of the
free energy of solvation is obtained using a slightly
different version of eq 6.11 (see eq 6.13, where Φi

σ is
the electrostatic potential generated at point i by the
solvent reaction field). The electrostatic potential Φσ

is determined by assuming very simple cavities for
the solute and by using limited multipole expansions
to represent the solute charge distribution.

Thus, for a spherical cavity, the electrostatic po-
tential can be written as a series of spherical har-
monics88 of increasing complexity. If the series is
limited to the first term (a monopole), the well-known
Born equation754 is obtained (eq 6.14). In eq 6.14, a
is the radius of the solute cavity and ε is the dielectric

∆Gele )
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constant, relative to vacuum, in suitable units. The
4π factor (arising from the traditional use of Gauss
units in continuum formalisms) is skipped for the
sake of simplicity.

Equation 6.14 can be modified to account for ionic-
strength-dependent terms (see eq 6.9) by using Kirk-
wood’s model,755 as shown in eq 6.15, where b is the
minimum distance between the central point charge
and the surrounding ions.

When a nonpolarizable point dipole is used, Bell’s
equation (eq 6.16, where µ is the dipole moment) is
obtained.756 Onsager’s equation (eq 6.17) is obtained
when an isotropic dipolar polarizability (R) is also
considered.757 Related equations for calculating the
∆Gele of a quadrupole placed in the center of a sphere
were developed by Abraham and Cooper.758

These models are able to reproduce the electrostatic
contribution to the free energy of solvation for very
simple solutes. However, they provide poor results
for real molecules mainly due to errors resulting from
(i) the truncation of the multipole expansion and (ii)
the use of a spherical cavity to define the solute/
solvent boundary.

The multipole expansion converges very slow-
ly,759-762 which makes it necessary to introduce a
large number of spherical harmonics in order to
reproduce the real electrostatic potential. Traditional
strategies used to reduce this problem are based on
the use of limited multipole expansions centered at
different points inside a spherical cavity. Models such
as those developed by Kirkwood and co-workers763-765

have been used to qualitatively study protonation in
globular proteins.766-769 Nevertheless, the suitability
of these models for use with proteins is severely
limited by the simplicity of the basic formalism.358,770

Different authors have tried to more realistically
describe the solute/solvent boundary (see ref 3 for a
review). Models for ellipsoidal cavities have been
devised by many authors (see refs 3 and 683).
Cylindrical cavities have also been developed and
used to study solvent effects in DNA,771-773 and few
models of molecular-shaped cavities recently have
been developed.3,774 However, the most popular mul-
tipole method used in biochemical studies is the
generalized Born model (GBM), which is explained
in detail below.

6.4. Generalized Born Model
In the generalized Born model (GBM),76,450,775-781

the charge distribution is represented by a limited

set of point charges typically centered at nuclei. ∆Gele
is then determined from the individual Born solva-
tion of each atom (charge), corrected by the perturb-
ing effect of the other atoms (charges). The most
popular algorithm was developed by Still and co-
workers780 and is shown in eqs 6.18 and 6.19, where
q stands for the solute charges and ∆GB is a screening
function defined as shown in eqs 6.19 and 6.20, where
R is the effective Born radius and d is a constant
usually, but not always, equal to 4. Note that we
have used our standard nomenclature instead of
Still’s, which denotes ∆Gele as ∆Gpol,780 to emphasize
that eq 6.18 does not account explicitly for the
electronic polarization contribution to solvation (see
below).

where

Equation 6.18 converges to the standard Born
equation (eq 6.14) at rij ) 0 and to the Born +
Coulombic expression at large rij distances.734 At
short distances (rij < 0.1(RiRj)1/2), eq 6.18 provides a
good approximation of Bell’s equation (eq 6.16).
Finally, eq 6.18 includes both the self (i ) j) and
shielding (j * i) contributions to solvation. Balance
between these conditions is critical to correctly
representing the solvent effects (see below).

The key parameters in GBM are the effective Born
radii (Ri) for the different atoms of the solute.
Effective Born radii are not intrinsic atomic proper-
ties (such as the van der Waals radii are) but instead
depend on the molecular geometry. They are usually
computed using eq 6.21,780 which converges to the
intrinsic Coulomb radii (Fi) only for an isolated atom.
Larger values are obtained if the sphere centered on
atom i intersects the spheres centered on other
atoms.

In eq 6.21, Fi is a fraction representing the exposed
surface area of a sphere of radius r centered at atom
i, when it is surrounded by spheres of radius Fj
centered on the other atoms, j, of the molecule in a
given conformation (noted by rij).

The calculation of effective Born radii from eq 6.21
requires a knowledge of the intrinsic Coulomb radii
(F), which are obtained from van der Waals radii in
force fields780,782,783 or are fitted to reproduce experi-
mental data.784-792 In several QM versions of the
GBM model developed by Cramer and Truhlar,785-792

the intrinsic Coulomb radii are replaced by flexible
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radii whose values are modulated as a function of the
atomic charge.

Equation 6.21 has been used in most versions of
the GBM method,785-792 including the GBM-based
QM algorithms. However, solving eq 6.21 is very
time-consuming and it cannot be routinely used for
macromolecules. This has led to the development of
approximate methods for faster evaluation of the
effective Born radii,780,784,793-795 which can then be
applied to large systems.795-799

One approach for quickly calculating the effective
Born radii is based on the pairwise model developed
by Schaefer and Froemmel793 and translated to the
GBM framework by Hawkins et al.794 The basic idea
of this method is to consider only the pairwise
contributions to the atomic sphere overlap. Using this
approach, which is expected to be quite reliable for
most small and medium-sized molecules of interest,
one can find an analytical expression for the Born
radii (eqs 6.22-6.24) and, after a suitable param-
etrization, obtain results similar to those derived
using standard effective Born radii.784

where

and

Another popular method for rapidly determining
effective Born radii has been proposed by Still’s
group.782 This method is based on the premise800 that
the reduction in ∆Gele of an atom, i, due to the
presence of the atomic sphere of other atom, j, is
proportional to the volume of this sphere and in-
versely proportional to the distance between the two
atoms raised to the fourth power. This approach is
valid only for very large interatomic distances; thus,
a series of scaling parameters, which are dependent
on molecular topology, must be introduced. The
electrostatic free energy of solvation of a single atom
with a unit charge (∆Gi

ele) therefore is defined using
formulas similar to those displayed in eqs 6.25 and
6.26. A modification of this method, which includes
extra fitted parameters, has been suggested by
Dominy and Brooks.795

otherwise

In eqs 6.25 and 6.26, rij is the interatomic distance,
Vj is the volume of atom j, and P1-5 are fitted
parameters. CCF (close contact function) is a function
used to correct for deviations arising from strong
overlap between the atoms i and j. Ri and Rj are the
van der Waals radii of atoms i and j, respectively.
(Note that these values are usually different from the
Coulomb radii Fi and Fj.)

The parameters P1-5 are typically fitted to Pois-
son-Boltzmann calculations of ∆Gi

ele for a large
series of molecules. After this parametrization pro-
cess, the total electrostatic free energy of solvation
(∆Gele) is computed using the standard equations (eqs
6.18-6.20). The quality of the results yielded by this
method are similar to those obtained using standard
effective Born radii, at least for systems involving
small molecules.

The use of approximate Born radii and suitable
parameters permits the rapid and accurate calcula-
tion of ∆Gele, which should allow GBM to be used in
studying macromolecules. However, before this oc-
curs, the method needs additional parametrization.
This parametrization must be consistent with the
force field used to represent intrasolute interactions,
with the Coulomb radii used to define the solute
cavity, and with the empirical parameters used to
define the steric contribution to solvation. Without
this additional parametrization, the current GBM
methods provide good results for small molecules but
are not as reliable for macromolecules. Adding the
extra fitted parameters should yield good approxima-
tions to the finite-difference Poisson-Boltzmann
results for macromolecules.425,426,795,796,801

As is typically done for continuum electrostatic
methods, GBM is combined with empirical methods
when evaluating the steric contributions to solvation.
These combined methods, which are typically re-
ferred to as GB-SA models,425-427,778-802 represent the
steric contributions by means of empirical relation-
ships with the solvent-accessible surface (eq 6.27).
In eq 6.27, γi and SASi are the empirical surface
tension parameter and the solvent-accessible surface
for atom i, respectively. The most elaborated version
utilizes surface tension parameters fitted for a large
number of different atom types.4,778,785-792

Ri
-1 ) Fi

-1 -
1

2
∑

j ( 1

Lij

-
1

Uij

+ Aij + Bij) (6.22)

Aij )
rij

4 ( 1

Uij
2

- 1

Lij
2) (6.23)

Bij ) 1
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ln
Lij

Uij
+

Fj
2

4rij( 1

Lij
2

- 1

Uij
2) (6.24)

Lij ) Uij ) 1 if rij + Fj e Fi

Lij ) Fi if rij - Fj e Fi < rij + Fj

Lij ) rij - Fj if Fi e rij - Fj

Uij ) rij - Fj if Fi e rij + Fj

∆Gele
i ) (1 -

1

ε
)[- 1

2(Fi + P1)
+ ∑

j

stretch P2Vj

rij
4

+

∑
j

bend P3Vj

rij
4

+ ∑
j

nb P4VjCCF

rij
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CCG ) 1.0 if
rij

Ri
vw + Rj

vw
> 1

P5

CCF ) {1
2[1.0 - cos{( rij

Ri
vw + Rj

vw)2

P5}]}2

(6.26)

∆Gster ) ∆Gcav + ∆Gvw ) ∑
i

γiSASi (6.27)
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The use of GB-SA to dynamically study macro-
molecules is limited by the required calculation of
solvent-accessible surfaces. However, recent studies
suggest that GB-SA methods might be valuable for
performing long time scale MD simulations using
implicit solvent.795,797 However, even these methods
are susceptible to the intrinsic shortcomings of
continuum electrostatic models (see above) and, in
addition, have a few other shortcomings which are
directly related to the semiempirical character of eqs
6.18-6.20.

One problem which arises in GBM methods is
attributable to the lack of balance between the “self”
and “shielding” contributions to solvation (see eq
6.28). This problem, which could lead to errors in the
calculation of solvent-mediated intrasolute interac-
tions, has been recently discussed by Jayaram, Liu,
and Beveridge.801 They compared GBM and finite-
difference Poisson-Boltzmann results for model sys-
tems and found a good agreement between the ∆Gele

,s
obtained but poor agreement between their compo-
nents. The authors suggested that these errors can
be alleviated by modifying the constant d, which
appears in the screening function fGB (see eq 6.18-
6.20), from the standard value of 4.0 to a value of
1.64 and by simultaneously modifying the Coulombic
radii to guarantee the accuracy of ∆Gele.

where

A second problem, which is common to all electro-
static continuum methods based on the use of eq
6.8, arises due to the neglect of ionic effects. This
neglect limits the suitability of GB-SA methods
for studying strongly charged polymers such as
nucleic acids, where salt effects are critical to ex-
plaining their structure and dynamics. One possibil-
ity for alleviating this problem has been recently
suggested by Case and co-workers.796 These authors
modified the GBM equation (eq 6.18) by substi-
tuting the dielectric-dependent factor (eq 6.31). This
adequately reproduced the results obtained using
finite-difference solutions of the linear Poisson-
Boltzmann equation (eq 6.9). However, there is still
a need to correct for systematic deviations by mul-
tiplying the Debye-Hückel screening parameter (κ)
by an empirical parameter (ê in eq 6.32) that should
take values below the unity (0.7 is recommended in
ref 131).

where

6.5. Methods Based on the Image Charge
Approximation

Image charge approximation methods rely on the
fact that the potential generated at the position of a
charge q which is at a distance d from a grounded
plane is equal to that generated by an opposite charge
(-q) placed at the same distance inside the conduc-
tor.803 If the conductor is replaced by a dielectric
continuum, the image charge can then be determined
as -q(ε - 1)/(ε + 1). It is not obvious how to extend
the image charge model to nonplanar interfaces. For
a simple spherical dielectric,804 each charge leads to
the generation of an infinite number of image charges,
each mirroring itself. This series is typically re-
stricted to the first term. This yields simplified
expressions for the solvent electrostatic potential
(Φσ), which for high dielectric solvents can accurately
reproduce the real ∆Gele. (For a discussion, see refs
3 and 353.) The approximate solution for a set of
point charges consists of the real charges plus their
individual image charges.

Image charge approximation methods have not
been widely used for macromolecules but are clearly
applicable to the introduction of long-range effects
in discrete MD or MC simulations of condensed
phases.

6.6. Boundary Element Methods
The popular boundary element method (BEM; also

named apparent surface charge, ASC) is the origin
of many of the most recent classical continuum
electrostatics algorithms. This method is based on the
fact that the reaction potential generated in the
solvent by the presence of the solute charge distribu-
tion (Φσ) may be described, at any point of the space,
in terms of an apparent charge distribution spread
over the solute cavity surface. The apparent charge
density (σ) can be determined from the component
of the field normal to the surface, as shown in eq
6.33,3,680-682,805-812 where ΦTOT contains the contribu-
tion of both the solute charge distribution and that
of the surface apparent charge distribution (eq 6.34)
and n is an unit vector normal to the surface.

The solute potential can be computed from Cou-
lomb’s law if point charges are used to describe the
solute charge distribution, and the solvent potential
can be determined by integration over the solute
cavity (eq 6.35, where Σ stands for the cavity surface
and s is the vector defining a point on Σ).
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N qiqj
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λ ) êκfGB (6.32)

σ ) ε - 1
ε

∂ΦTOT

∂n
(6.33)

ΦTOT ) ΦF + Φσ (6.34)

Φσ(r) ) ∫Σ

σ(s)
|r - s| d2s (6.35)
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If the surface, Σ, is divided into small elements,
where the charge density can be assumed to be
constant, eq 6.35 can be rewritten in a simplified
form (eq 6.36). The apparent charges qk are deter-
mined as shown in eq 6.37, where ∆Sk is the area of
the surface element k whose center (where qk is
located) is determined by sk.

Equations 6.34-6.37 can be solved by using one of
three procedures: (i) the iterative solution,680,681 (ii)
the direct matrix inversion approach,805-812 or (iii) the
approximate closure method.813 (For detailed descrip-
tion of these approaches, see ref 3.) Methods based
on boundary elements are easy to implement into QM
algorithms and, when combined with empirical cor-
rections for the introduction of cavitation and disper-
sion-repulsion terms, provide excellent descriptions
of the solvation of small- and medium-sized mol-
ecules. Methods such as the polarizable continuum
model (PCM,680,681 also called MST) and COSMO814-821

are among the most popular and accurate of these
SCRF algorithms. Detailed explanations of these QM
methods can be found in specific reviews.3,4,449,682,687

In the following discussion we limit ourselves to the
analysis of a few classical versions which can be used
for biologically relevant systems.

Zauhar and co-workers805-809 developed different
algorithms based on the inverse matrix approach to
determine electrostatic and hydration effects. Their
method has been successfully applied to the deter-
mination of hydration free energies and electrostatic
potentials for few small proteins.809 Zauhar’s ap-
proach has been recently extended by Purisima and
co-workers for the efficient computation of the free
energy of solvation of rather large molecules.822,823

Likewise, the PCM method has also been used to
study proteins.824

The use of Zauhar’s method (as with any other
BEM method) to study solvation in proteins is
ultimately limited by the shortcomings of continuum
electrostatic models, specifically the uncertainties
associated with the definition of a macroscopic di-
electric constant for the protein. One way to partially
solve this problem might be to perform the BEM
calculation in conjunction with MD algorithms that
are able to capture the fluctuation of the protein and
thus part of its dielectric response. This solution is
hampered by two practical problems: (i) the deter-
mination of the solvent-accessible surface can be very
slow for large molecules and (ii) it might be necessary
to define a very large number of surface elements in
order to discretize the molecular surface, which can
dramatically slow the calculation of the solute-
solvent interaction energy.

6.7. The Semiclassical MST Model
The most popular BEM algorithm was developed

by Pisa’s group,3,680-682,687 based on a formalism

developed in the early 1980s by Miertus, Scrocco, and
Tomasi.680,681 It was initially formulated within the
iterative framework and developed for a QM or
classical description of the solute. Due to the popu-
larity of this method, we will briefly discuss its most
relevant features. There are several different versions
of the PCM, and we will concentrate on the specific
details of the version developed at Barcelona.

6.7.a. Theoretical Background of the Classical MST
Method

As previously mentioned, the free energy of solva-
tion can be expressed as the addition of three differ-
ent contributions: (i) cavitation, (ii) van der Waals,
and (iii) electrostatic (eq 2.1). In the QM framework,
the electrostatic contribution is determined by adding
the perturbation operator to the solute Hamiltonian
(eq 6.1) and self-consistently solving the correspond-
ing nonlinear Schrödinger equation. In a classical
framework, the electrostatic component adopts the
expression given by eq 6.38, where {Qi} and {qk}
denote the sets of point charges that represent the
charge distribution of the solute and the solvent
reaction field, ri and rk stand for the position vectors
of the solute and solvent charges, respectively, M is
the number of surface elements, and N is the number
of charges that represent the solute charge distribu-
tion (which does not necessarily coincide with the
number of atoms).

Most of the applications based on eq 6.38 neglect
the contribution arising from the solute polarization.
This allows eq 6.38 to be rewritten as eq 6.39, where
the index “0” emphasizes that the gas-phase charge
distribution of the solute remains unaltered upon
solvation and that the solvent’s apparent surface
charges are generated in response to the gas-phase
charge distribution of the solute.

At this level of approximation, the reliability of the
(first-order) electrostatic free energy largely depends
on the accuracy of the point charges that describe the
solute charge distribution. Numerical fitting to the
QM electrostatic potential is a natural procedure to
derive these charges.576-583,825-829 This approach has
been used by different authors to compute ∆Gele

0. In
some cases the potential-derived point charges are
scaled to improve the results.830-832

Other partitionings of the molecular charge distri-
bution are also feasible. For example, one approach
consists of assigning prototypical charge distribution
functions to chemical subunits (see refs 3, 833, and
834 for detailed explanations). This approach begins
by describing the subunits in terms of localized
orbitals, called prototypes, which are replaced by
their associated nuclear charges plus either one -2
charge or two -1 charges for each electron pair. The

Φσ(r) ) ∑
k

qk

|r - sk|
(6.36)

qk ) ∆Skσ(sk) (6.37)
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2
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M Qiqk
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locations of the negative charges are determined by
the localized orbitals’ charge centers and by the
conservation of the dipole and quadrupole moments
of the prototypes. The charge distribution of the
molecule is then given by a set of positive point
charges representing the nuclei and negative point
charges in an amount usually less than the number
of electrons. This approach has been used to examine
solvent effects on DNA double helices.701

As for the nonelectrostatic terms, the cavitation
component is computed using Pierotti’s scaled par-
ticle theory,835 which has been adapted to molecular-
shaped cavities according to the procedure proposed
by Claverie.759 The cavitation free energy is expanded
in a series of powers of RSX (eq 6.40), which is the
radius of a sphere that encloses the solute and
excludes the centers of the surrounding solvent
molecules. (eq 6.41, where RX and RS denote the radii
of the solute and solvent molecules, respectively).

The coefficients, Kk, in the power expansion depend
on the pressure, P, the temperature, T, and micro-
scopic properties (the molecular radius, RX, and the
numeral density, nX) of the solvent (eqs 6.42a-d).

where y ) 4πRX
3nX/3.

For practical purposes, an effective radius for the
solute can be defined from the molecular surface, SX
(eq 6.43), or volume, VX (eq 6.44), of the solute’s
molecular-shaped cavity.

Alternatively, a more rigorous description can be
obtained using Claverie’s generalization759 of Pierot-
ti’s equation (eq 6.45). In this case, the solute’s free
energy of cavitation is expressed as the sum of the
contributions from the Z spheres that define the
molecular-shaped solute cavity, weighted by their
contribution to the total cavity surface. This approach
is preferred over the spherical solution because (i)
the use of an effective sphere can lead to artificial
results for nonspherical solutes and (ii) it ensures the

size-consistency of the nonelectrostatic terms.836

In eq 6.45, Z denotes the total number of spheres
necessary to enclose the solute, which does not
necessarily coincide with the number of atoms in the
solute. RZ and SZ are the radius of sphere z and its
contribution to the solute/solvent interface, respec-
tively, and ∆Gcav(RZ) is the cavitation work required
to generate a sphere of radius RZ in the solvent,
which is determined from eq 6.40.

Finally, the van der Waals contribution to the free
energy of solvation is computed using a linear
relationship that depends on the solvent-exposed
surface of the atoms in the solute, as noted in eq 6.46,
where êi denotes the hardness of atom i, which is
determined from the experimental free energies of
solvation for neutral molecules. Other versions of the
PCM method compute this term using a combination
of pairwise additive terms that relate to the atoms
or groups of atoms on the solute and the solvent837-839

or at the QM level by including an additional operator
in the Hamiltonian.690

Early MST versions computed the three contribu-
tions to the free energy of solvation based on a unique
solute/solvent interface. That interface was defined
as the solvent-excluded surface generated by suitably
scaling the van der Waals radii of the atoms. Scaling
factors of 1.25, 1.60, and 1.80 were optimized for
calculations in water,840,841 chloroform,125 and carbon
tetrachloride,842 respectively, by using the HF/6-31G-
(d) version of the MST model. (Slightly different
scaling factors were optimized for water in semiem-
pirical versions of the MST model; see refs 793-794
for details).

Recently, the suitability of using a dual-cavity
definition, as opposed to a single-cavity approach, for
determining the electrostatic and nonelectrostatic
contributions to the free energy of solvation was
examined.836 According to this method, the electro-
static term is determined using the cavity that
results from scaling the van der Waals radii, while
the nonelectrostatic component is determined from
the cavity generated by unscaled van der Waals radii.
The results obtained from this dual-cavity treatment
were found to be in better agreement with chemical
intuition, and this approach has been consequently
introduced into the latest versions of the MST ap-
proach.

6.7.b. Treatment of the Polarization Effect: The
Semiclassical MST Model

To account for the polarization of the solute by the
solvent reaction field, we845,846 along with others847

recently developed a simple expression derived from
a perturbation treatment of the linear response
approximation of the solvent effect. Such an expres-
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sion very accurately reproduces the polarization
contribution to the free energy of solvation.

The polarization free energy, ∆Gpol, which is de-
fined as the change in the free energy of solvation
due to relaxation of the solute wave function upon
solvation, is given by eq 6.47. VR(Ψsol) and VR(Ψ0)
denote the solvent reaction field induced by the solute
charge distribution when it is fully relaxed in solution
and when in the gas phase, respectively. The first
and second terms on the right-hand side of eq 6.47
correspond to the electrostatic free energy of the fully
polarized solute in solution and of the solute with a
gas-phase charge distribution.

∆Gpol also can be expressed as the addition of (i)
the distortion free energy, ∆Gdis (eq 6.48), which
accounts for the solute’s loss of internal stability
when its electronic distribution is perturbed by
solvation, and (ii) the stabilization free energy, ∆Gsta
(eq 6.49), which reflects the increased intermolecular
stability of the solute/solvent system. Since this latter
contribution is expressed in terms of solute-solvent
interactions, it can be easily translated to a classical
framework. However, QM methods are required to
accurately describe the distortion term since it in-
volves electron density changes.

As noted above, the perturbative treatment of the
solvation process845,846 allows the polarization con-
tribution to be rewritten as eq 6.50, which, quite
remarkably, permits ∆Gpol to be computed in terms
of solute-solvent interactions. More importantly, the
addition of eq 6.50 to the electrostatic free energy of
the solute when it has the gas-phase charge distribu-
tion allows the total electrostatic component of the
free energy of solvation to be estimated, as shown in
eq 6.51. In contrast to eq 6.1, the simple expression
given by eq 6.51 only involves interactions between
the solute and solvent molecules, thus facilitating its
implementation in classical calculations.

It is worth noting that eqs 6.50 and 6.51 very
accurately reproduce the exact values obtained from
a full QM treatment of the solvation of a large variety
of solutes.845,846 Indeed, when eq 6.51 is expressed in
a classical framework, the polarization effects can be

directly included in the calculation of the electrostatic
free energy by using an inexpensive procedure. This
procedure requires the definition of two sets of
charges for the solute, one which describes the charge
distribution of the solute in the gas phase {Qi

0} and
the other which describes its charge distribution in
solution {Qi

sol}. The electrostatic free energy then is
simply given by eq 6.52, where the solvent reaction
field is computed from the charges that represent the
fully relaxed charge distribution of the solute in
solution. This is in contrast to the usual expression,
as given by eq 6.39, where only the gas-phase solute
charge distribution is considered.

As previously noted, the accuracy of the electro-
static free energy of solvation greatly depends on the
quality of the charges that simulate the solute charge
distribution (Q). Suitable charges can be derived by
fitting the QM electrostatic potential determined
from the solute wave function in the gas phase and
in solution, but better results are obtained when the
charges are simultaneously fitted to both the elec-
trostatic potential and field computed at selected
points on the cavity surface of the solute.848

Combining eq 6.52 with expressions for cavitation
(eq 6.45) and van der Waals (eq 6.46) contributions
constitutes the essence of the semiclassical MST
model. This model has been implemented in classical
MC and MD discrete methods849 and in classical
continuum models.845,846,850 Recently, it also has been
combined with standard Monte Carlo techniques to
explore the configurational space of solutes in solu-
tion, and has been used to study the influence of
solvent on the dimerization of pairs of interacting
solutes, including both neutral molecules and salt
bridges.220,300,302

6.8. Other Continuum Electrostatic Methods

Electrostatic continuum methods exist which can-
not be easily classified as belonging to any of the
categories listed above. Among these the field energy
method merits special attention. This approach was
developed by Schaefer and co-workers793,851 and has
been utilized by a few other groups852,853 that are
interested in the solvation of macromolecules. The
field energy method has much in common with
strategies such as the image charge method and the
generalized Born model. Its main feature is that the
electrostatic free energy of solvation is not deter-
mined from eqs 6.13 or 6.11 but instead is computed
by integrating the energy density of the electrostatic
field (eq 6.53), thus avoiding calculation of the
solvent-screened electrostatic potential. In eq 6.38,
Eele is the total electrostatic energy of the system and
the index R3 indicates that the integration is carried
out over the entire space. The energy density u(r) is
determined from the electrostatics displacement vec-
tor D(r), as shown in eq 6.54.

∆Gpol ) 〈Ψsol|Ĥ0 + 1
2

V̂R(Ψsol)|Ψsol〉 -

〈Ψ0|Ĥ0 + 1
2

V̂R(Ψ0)|Ψ0〉 (6.47)
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If point charges are used,793,852,853 the total dis-
placement vector can be determined as the sum of
atomic displacements (eq 6.55, where i stands for a
center of charge on the solute) and the total electro-
static energy can be determined as shown in eq 6.56,
where the terms Eself and Eint resemble the “self” and
“screened” terms found in the GBM method and can
be computed as shown in eqs 6.57 and 6.58.

Several simplifications are introduced in order to
solve eqs 6.57 and 6.58. First, the space is divided
as usual into solute and solvent regions, which allows
ε(r) to be replaced by the dielectric constants for the
solute (inside the cavity) and the solvent (outside the
cavity). This allows the two integrals to be partitioned
into solute and solvent regions, which facilitates their
computation. A second simplification is the assump-
tion that the contribution of the reaction field to the
total electric displacement is negligible outside of the
solute cavity (the Coulomb field approximation) and
that the electric displacement can be determined
from the image charge approximation for a “pseudo-
planar” solute/solvent boundary.793 The algorithms
that were developed using these approximations
appear to be more efficient at calculating the self-
energy term than the interaction term. Thus, in
recent implementations793,852,853 the interaction term
has been obtained from GBM calculations. Schaefer
and Karplus851 further improved the method by using
Gaussian charge distributions to represent the solute
charge atmosphere, and Caflisch and co-workers
implemented it in a docking program.852 This method
has not yet been extensively used, which makes it
difficult to quantitatively compare its results with
those from related methods. However, preliminary
studies suggest that this method can be a good
alternative to GBM (with similar advantages and
shortcomings) for analyzing solvation in macromol-
ecules.

7. Other Methods
There are other methods for describing solvation

in biological systems which cannot be classified in
any of the categories already reviewed in the preced-
ing sections. We will summarize two of the most

popular: (i) Langevin dipoles and (ii) the RISM
integral equation.

7.1. Langevin Dipoles
The description of environmental effects by means

of Langevin dipoles (LD) was pioneered by Warshel’s
group354,541,769,854-861 and was later adopted by other
authors (for example, see refs 864 and 865). Warshel
and co-workers developed different LD models of
increasing complexity for the study of processes in
solution or in proteins and also extended the LD
model to the QM framework.486,518,854,859 Their most
recent version of the LD model is actually a hybrid
PCM/LD method, where PCM calculations are car-
ried out to describe the polarization of the solute
charge distribution while LD calculations are used
to evaluate the solvation free energy.861-863 Recently,
this method has been used to calculate hydration
entropies.861,863 This treatment lies between con-
tinuum and discrete methods, since it avoids the use
of the dielectric constant but omits a detailed de-
scription of solvent molecules.

The simplest system studied by LD models is that
of a small polar solute in water.486,541,769 The solute
is placed in the center of a cubic grid, whose spacing
(∼3 Å) mimics the density of pure water. All grid
points beyond a given spherical cutoff or inside the
van der Waals sphere of the solute are removed
(Figure 4). The Langevin dipoles (eq 7.1) are then

centered at each of the remaining grid points, and
the polarization of the solvent by the solute is
accounted for by reorienting the solvent dipoles,
which generates the reaction field.

In eq 7.1, µ0 represents the water dipole858 but can
be considered to be an adjustable parameter.354,486,541

ei is a unit vector indicating the direction of the
electric field (êi in Warshel’s nomenclature, which is
mostly retained here), and Xi is determined as shown
in eq 7.2, where the resistance to reorientation by a
water molecule is accounted for through the param-

Eele ) ∫R3u(r) dr (6.53) (6.53)

u(r) ) 1
2

D2(r)/ε(r) (6.54)

D(r) ) ∑
i

Di(r) (6.55)

Eele ) ∑
i

Ei
self + ∑

i>j
Eij

int (6.56)

Ei
self ) 1

2 ∫R3

Di
2(r)

ε(r)
dr (6.57)

Eij
int ) ∫R3

Di(r)‚Dj(r)

ε(r)
dr (6.58)

Figure 4. Schematic representation of the grid used to
center dipoles in Warshel’s Langevin dipole model.

µi ) µ0(coth (Xi ) 1
Xi

)ei (7.1)
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eter C, which adopts values of 1541 or 0.5,486 as
determined by fitting the LD calculations to all-atom
MD simulations.

We should note the interdependence between the
electric field and the Langevin dipoles. This arises
from eqs 7.1 and 7.2 along with the fact that the total
electric field at the grid point i is the sum of the
electric fields created by the fixed charges of the
solute and by the other Langevin dipoles (eq 7.3).
This interdependence makes it necessary to use an
iterative process in solving eqs 7.1-7.3.354,541,769

Once the Langevin dipoles are defined, the elec-
trostatic contribution to solvation can be determined
from eq 7.4. Steric contributions to the solvation can
be treated as in standard force-field calculations.

The LD method requires parametrization of the
terms C and µ0 (eqs 7.1 and 7.2), as well as of the
van der Waals parameters that define the exclusion
radii for the placement of Langevin dipoles. In fact,
the parametrization of this exclusion surface is
conceptually similar to the optimization of the cavity
size in continuum models (see above).

The LD model is an interesting approach since it
combines the speed of continuum methods with a
semimicroscopic representation of the solvent. How-
ever, it has some limitations due to its simplicity.
These simplifications are as follows: (i) the solvent
electrostatic potential is expected to be well repre-
sented by a dipole term, (ii) the density of water
around the solute is assumed to be “nearly” constant,
(iii) the dielectric response related to the electron
relaxation is omitted, and (iv) the results can depend
on the grid spacing and might not be rotationally
invariant. Warshel and co-workers improved their
method to correct for some of these shortcomings.
They reduced the rotational variance of the results
by modifying the grid so that the centers of the
dipoles are regularly spaced (according to the water
density) on the molecular surface.486 They also refined
their use of a finite spherical grid by adding a
continuum correction to account for long-range in-
teractions.541,854 Finally, they have attempted to
introduce electronic polarization into the model by
means of the induced dipole theory (see the MD-MC
section above).

The protein dipole-Langevin dipole (PD-LD)
method is a LD model that combines an all-atom
treatment of nonaqueous solvents with induced di-
poles to represent the electronic polarization. It has
been widely used to study processes in proteins. The
system is divided into four components: (i) the site
of interest inside the protein, (ii) the rest of the
protein residues, (iii) the solvent molecules near the

protein, and (iv) the bulk solvent. These components
are treated at different levels of complexity. The site
of interest is treated at the QM level or using classical
force fields with or without the inclusion of induced
dipoles. The remaining atoms of the protein are
represented by point charges, induced dipoles, and
suitable van der Waals parameters. The water mol-
ecules near the protein are treated as Langevin
dipoles, and the remaining solvent is simulated by a
continuum electrostatic model.

7.2. RISM Integral Equation
An alternative approach to describing solvent ef-

fects in biomolecules is found in the reference inter-
action site model (RISM), which relies on statistical
mechanical integral equation theories of liquids.866

This model provides detailed information about sol-
ute-solvent interactions in terms of statistically
averaged site-site distribution functions. The for-
malism was originally developed by Chandler and co-
workers867-872 and was later improved by others for
application to polar liquids and ionic solutions.873-876

The RISM approach is derived from pair-correla-
tion theory. Accordingly, both solute and solvent are
considered to have a set of interaction sites which
interact as described by suitable effective pair po-
tential functions. The total pair-correlation function
between interaction sites x and s in the respective
molecular species X and S depends on the direct
correlation function for finding site x at a given
distance from s, along with the probability of site x
being correlated with another site s′, which is in turn
correlated with site s integrated over all possible
positions of s′, plus triple pairs and so on. For
molecular fluids, these relationships can be written
in terms of the so-called RISM integral equation (eq
7.5), which is usually written in the more compact
matrix form given by eq 7.6.

In eq 7.5, Fx and Fs denote the number density of
x- and s-type sites in species X and S, respectively,
while FS and Fs′ are the respective number densities
of species S and S′. ω denotes the intramolecular
correlation function, c represents the site-site inter-
molecular direct correlation function, and h is the
site-site total intermolecular correlation function.

A closure relationship is required in order to solve
the system of integral equations represented by eq
7.6, and this is generally accomplished by using
either the hypernetted chain technique (see ref 873)
or slightly modified expressions such as given by eq
7.7,877-879 where â is the inverse of the Boltzmann
constant multiplied by the absolute temperature and
Ueff is an effective site-site interaction potential
function.

Xi ) C
µ0 êi

kBT
(7.2)

êi ) êi
0 + êi

µ (7.3)

∆Gele ) -
1

2
∑

i
µiêi

0 (7.4)

FxFshx s(r) ) ∑
y∈X

∑
t∈S

ωxy*cyt*ωts + ∑
S′

∑
y∈X

∑
s′∈S′

(.5)

FhF ) Fω*c*Fω + Fω*c*FhF (7.6)

hx s(r) ) exp{-âUx s
eff(r) ) hx s(r) - cx s(r)} - 1

(7.7)
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The interaction potential function is generally
expressed as the sum of a short-range Lennard-
Jones energy term and a Coulombic interaction
energy. In some cases, however, the Coulombic term
is corrected by parameters chosen to ensure that the
calculated total solvent correlation functions are
consistent with the macroscopic dielectric constant
of the solvent.876,877,880-882

Solving eqs 7.6 and 7.7 makes it possible to
compute the free energy of solvation by using the
hypernetted chain closure technique (eq 7.8).879,883,884

An alternative solvation functional is given by eq
7.9,885 which differs from eq 7.8 in that it does not
have the term 1/2h2

xs(r). It also assumes that the
solvent fluctuations follow a Gaussian statistical
distribution and that the solute couples linearly to
the solvent with a strength determined by the direct
correlation function.

Most recent applications of the RISM integral
equation have focused on the conformational equi-
librium of biopolymers in solution and especially on
the role of salt effects in these equilibria.886-891

Hirata et al.892,893 coupled the electronic structure
of the solute as determined from quantum chemical
calculations with the solvent distribution described
by the extended RISM method. In their implementa-
tion, a set of partial charges for the solute atoms is
determined from the previous step in SCF and then
plugged into a RISM calculation to obtain a solvent
atom distribution around the solute. Subsequently,
the electrostatic potential (eq 7.10) produced by the
solvent charge distribution at each solute atom is
incorporated into the solvated Fock operator in order
to perform the next step in the SCF cycle. In eq 7.10,
qs is the partial charge at solvent site s and gxs(r) is
the radial distribution function of the solvent mol-
ecules’ interaction site s around the solute’s site x
(this latter term is related to the total correlation
function by gxs(r) ) hxs(r) + 1). This process is then
repeated until consistency is obtained, which allows
both the electronic structure of the solute and the
solvent distribution to be simultaneously optimized
during the RISM-SCF cycle.

This RISM-SCF method has been applied to the
study of solvent-induced shifts in absorption spec-
tra,892,893 the acidity/basicity of organic com-
pounds,894-896 and conformation897 and tautomer-
ism.205

An alternative implementation of the RISM theory
in semiempirical AM1 and PM3 Hamiltonians, de-

noted XSOL, has been reported by Gao et al.898 The
main difference between this approach and the
RISM-SCF approach lies in the nature of the solute
charges employed to solve the extended RISM equa-
tions. Thus, whereas Hirata et al. used electrostatic
potential-fitted charges, Gao et al. used the charge
model 1 (CM1) algorithm developed by Cramer and
Truhlar899 to derive atomic charges for the solute.
Furthermore, Gao and co-workers optimized the van
der Waals parameters by fitting XSOL estimates of
the solvation free energy to their experimental values
for a series of small organic solutes.898

8. Concluding Remarks
Within the past few years, theoretical chemists

have realized that a detailed understanding of chemi-
cal or biochemical systems is impossible without an
accurate description of their solvent effects. Conse-
quently, a tremendous effort has been made to
develop methodological approaches to treat these
solvent effects, and at this time, the beginning of the
21st century, many methods for representing solva-
tion in biomolecular systems are available. In this
review we have tried to summarize the most impor-
tant characteristics of the different approaches,
emphasizing their strengths and weaknesses. We
hope that this will help the reader choose the most
suitable approach for dealing with solvent effects in
a given biomolecular system.
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(505) Svensson, M.; Humbel, S.; Fröse, R. D. J.; Matsubara, T.; Sieber,

S.; Morokuma, K. J. Phys. Chem. 1996, 100, 19357.
(506) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio

Molecular Orbital Theory; Wiley: New York, 1986.
(507) Thompson, M. A.; Schenter, G. K. J. Phys. Chem. 1995, 99, 6374.
(508) van Duijnen, P. Th.; de Vries, A. H. Int. J. Quantum Chem. 1996,

60, 1111.
(509) Bryce, R. A.; Buesnel, R.; Hillier, I. H.; Burton, N. A. Chem. Phys.

Lett. 1997, 279, 367
(510) Stern, H. A.; Kaminski, G. A.; Banks, J. L.; Zhou, R.; Berne, B.

J.; Friesner, R. A. J. Phys. Chem. B 1999, 103, 4730
(511) Banks, J. L.; Kaminski, G. A.; Zhou, R.; Mainz, D. T.; Berne, B.

J.; Friesner, R. A. J. Chem. Phys. 1999, 110, 741.
(512) Gao, J. J. Phys. Chem. B. 1997, 101, 657.
(513) Thompson, M. A. J. Phys. Chem. 1996, 100, 14492.
(514) Gao, J. J. Comput. Chem. 1997, 18, 1061.
(515) Gao, J.; Alhambra, C. J. Chem. Phys. 1997, 107, 1212.
(516) King, G.; Warshel, A. J. Chem. Phys. 1989, 91, 3647.
(517) King, G.; Lee, F. S.; Warshel, A. J. Chem. Phys. 1991, 95, 4366.
(518) Luzhkov, V.; Warshel, A. J. Comput. Chem. 1992, 13, 199.
(519) Freindorf, M.; Gao, J. J. Comput. Chem. 1996, 17, 386.
(520) Muller, R. P.; Warshel, A. J. Phys. Chem. 1995, 99, 17516.
(521) Bentzien, J.; Muller, R. P.; Florian, J.; Warshel, A. J. Phys.

Chem. B 1998, 102, 2293.
(522) Lyne, P. D.; Hodoscek, M.; Karplus, M. J. Phys. Chem. A 1999,

103, 3462.
(523) Perakyla, M.; Kollman, P. A. J. Phys. Chem. A. 1999, 103, 8067.
(524) Bryce, R. A.; Vincent, M. A.; Hillier, I. H. J. Phys. Chem. A 1999,

103, 4094.
(525) Wesolowski, T.; Warshel, A. J. Phys. Chem. 1993, 97, 8050.
(526) Stanton, R. V.; Hartsough, D. S.; Merz, K. M., Jr. J. Phys. Chem.

1993, 97, 11868.
(527) Wesolowski, T.; Warshel, A. J. Phys. Chem. 1994, 98, 5183.
(528) Stanton, R. V.; Hartsough, D.S.; Merz, K. M., Jr. J. Comput.

Chem. 1995, 16, 113.
(529) Wei, D.; Salahub, D. R. Chem. Phys. Lett. 1994, 224, 291.
(530) Grochowski, P.; Lesyng, B.; Bala, P.; McCammon, J. A. J.

Comput. Chem. 1996, 60, 1143.
(531) Wesolowski, T.; Muller, R. P.; Warshel, A. J. Phys. Chem. 1996,

100, 15444.
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Am. Chem. Soc. 1998, 120, 8825.
(563) Salvatella, L.; Mokrane, A.; Cartier, A.; Ruiz-López, M. F. J. Org.
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